Neue Kernkraftanlage am Standort Dukovany


Bearbeiter:

Dr. rer. nat. Vlastimil Kostkan, Ph.D., Editor und autorisierte Person zur Beurteilung der Einflüsse auf den Schutzgegenstand des Netzwerks Natura 2000 gemäß der Best. § 45i des Gesetzes Nr. 114/1992 GBl., über den Natur- und Landschaftsschutz, in der gültigen Fassung

Mag. Jana Laciná., Editation des Dokuments

Ivančice, 1. 10. 2015

ID: 29231621  UID: CZ29231621  Tel.: +420 605 476 698/ +420 604 243 068  E-Mail: info@conbios.eu
Teilspezialisten, deren Geländeuntersuchungen und Analysen in den Jahren 2013-15 zur Bewertung herangezogen wurden:

<table>
<thead>
<tr>
<th>Name</th>
<th>Fachgebiet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipl.-Ing. Alexandra Masopustová</td>
<td>Botanik</td>
</tr>
<tr>
<td>Doz. Radovan Kopp, Ph.D.</td>
<td>Hydrobotanik, Hydrobiologie</td>
</tr>
<tr>
<td>Mag. Pavla Řezníčková, Ph.D.</td>
<td>Hydrobiologie</td>
</tr>
<tr>
<td>Dr.rer.nat. Lenka Šikulová (geb. Tajmrová)</td>
<td>Hydrobiologie</td>
</tr>
<tr>
<td>Dipl.-Ing. Petr Hesoun</td>
<td>Entomologie</td>
</tr>
<tr>
<td>Mag. Dušan Adam</td>
<td>GIS-Analysen und Landkartenunterlagen</td>
</tr>
</tbody>
</table>
INHALT

Abkürzungsverzeichnis .................................................................................................................. 2
Abbildungsverzeichnis .................................................................................................................. 2
Tabellenverzeichnis ....................................................................................................................... 3
1. Einleitung ...................................................................................................................................... 4
2. Kurze Beschreibung des Vorhabens .......................................................................................... 5
3. Methodik ..................................................................................................................................... 7
3.1. Überwachte Standorte ........................................................................................................... 9
3.1.1. FFH CZ0614134 – Tal des Flusses Jihlava ................................................................. 15
3.1.2. Schutzgegenstände von FFH – Tal des Flusses Jihlava ............................................... 16
3.1.3. Standorte im Bezugsgebiet ............................................................................................. 18
4. Festgestellte Einflüsse .............................................................................................................. 21
4.1. FFH CZ0614134 – Tal des Flusses Jihlava ....................................................................... 21
4.1.1. Einflüsse im Zusammenhang mit der Entwicklungsfläche D ......................................... 21
4.1.2. Einflüsse auf Lebensräume im Fluss Jihlava ............................................................... 24
4.1.3. Durch die Beschattung durch den Dampfschleier hervorgerufene Einflüsse ............ 34
4.1.4. Einflüsse im Zusammenhang mit der Verkehrslast während der Errichtung .......... 38
4.1.5. Kumulative Einflüsse des Aufbaus des Vorhabens NKKA EDU auf FFH CZ0614134 – Tal des Flusses Jihlava ................................................................. 39
4.1.6. Kumulative Einflüsse des Betriebs von EDU und des Vorhabens NKKA EDU auf FFH CZ0614134 – Tal des Flusses Jihlava ................................................................. 40
4.2. Andere Gebiete des Netzwerks Natura 2000 ........................................................................ 45
4.2.1. FFH CZ0623819 – Fluss Rokytáne ............................................................................. 45
4.2.2. FFH CZ0614131 – Tal der Flüsse Oslava und Chvojnice ............................................ 49
4.2.3. FFH CZ0614133 – Kozének ....................................................................................... 51
4.2.4. FFH CZ0622150 – Biskoupský-Hügel ................................................................. 51
4.2.5. FFH CZ0622161 – Ve Žlebě ...................................................................................... 51
4.2.6. FFH CZ0622179 – Široký ......................................................................................... 52
4.2.7. FFH CZ0623707 – Altes Schloss Jevišovice .............................................................. 52
4.2.8. VSG CZ0621032 – Thaya-Gebiet ........................................................................... 52
5. Schlussbewertung .................................................................................................................... 54
6. Vermindernde Maßnahmen .................................................................................................. 56
7. Literatur ...................................................................................................................................... 58
Anlage Nr. 1 .................................................................................................................................. 60
ABKÜRZUNGSVERZEICHNIS

AOPK ČR
Agentur für Natur- und Landschaftsschutz der Tschechischen Republik

ČHMU
Tschechisches Wetteramt

EDU
Kraftwerk Dukovany

EIA
Umweltverträglichkeitsprüfung

EVL/=FFH
Gebiet von gemeinschaftlicher Bedeutung (FFH-Gebiet, Europaschutzgebiet)

GIS
Geoinformationssysteme

GPS
Globales Positionsbestimmungssystem

NDOP
Funddatenbank von AOPK ČR

NJZ/=NKKA
neue Kernkraftanlage

NPR
Nationale Naturreservation

OOP
Naturschutzorgan

PO/=VSG
Vogelschutzgebiet

VD/=WW
Wasserwerk

VN/=WR
Wasserreservoir

ABBILDUNGSVERZEICHNIS

Abb. 1  Situation des Vorhabens der neuen Kernkraftanlage am Standort Dukovany ............ 6
Abb. 2  Entwicklungsf lächen der NKKA EDU in Bezug auf das n ächste Gebiet von gemeinschaftlicher Bedeutung in den Entfernungen bis zu 10 bzw. bis zu 20 km von der NKKA EDU ................................................................. 11
Abb. 3  Wechselseitige Position der Entwicklungsf lächen der NKKA EDU und des FFH CZ0614134 – Tal des Flusses Jihlava ................................................................. 13
Abb. 4  Lage der Vogelschutzgebiete im Hinblick auf die NKKA EDU ................................ 15
Abb. 5  Verbreitung des Russischen Bären (Callimorpha quadripunctaria) in der tschechischen Republik (www.biomonitoring.cz) .................................................. 17
Abb. 6  Verbreitung des Biotops V4A - Makrophyten-Vegetation der Wasserläufe in der tschechischen Republik (www.biomonitoring.cz) ........................................ 20
Abb. 7  Skryjský-Bach – Grenzabschnitt zwischen der Entwicklungsf läche D und dem FFH - Tal des Flusses Jihlava ................................................................. 22
Abb. 8  Vorkommen der Lebensräume – der Schutzgegenstände FFH CZ0614134 – Tal des Flusses Jihlava im Grenzabschnitt mit der Entwicklungsf läche D nach Quellen der AOPK ČR ................................................................. 22
Abb. 9  Vorkommen der Lebensräume – der Schutzgegenstände des FFH CZ0614134 – Tal des Flusses Jihlava im Grenzabschnitt mit der Entwicklungsf läche D nach eigenen botanischen Untersuchungen ........................................ 22
Abb. 10  Verfolgte Abschnitte des Flusses Jihlava und Bodendeckung der Hauptvertreter der Makrophyten (%) in einzelnen Teilen (2013) ........................................ 26
Abb. 11  Verfolgte Abschnitte des Flusses Jihlava und Bodendeckung der Hauptvertreter der Makrophyten (%) in einzelnen Teilen (2014) ........................................ 28
Abb. 12  Vorkommen der makroskopischen Algen mit dem Übergewicht der Gattung Voucheria unter dem Wasserwerk Mohelno ........................................ 29
Abb. 13  Gemeinsames Vorkommen der Moose und der Rotalge Hildebrandia rivularis .... 30
Abb. 14 Abschnitt des Flusses Jihlava mit dem Übergewicht der Rotalge *Hildebrandia rivularis* .............................. 30
Abb. 15 Gemeinsames Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) und der Rotalge (*Hildebrandia rivularis*) ................................................. 31
Abb. 16 Detailansicht des Bestandes des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) ............................................................................................................. 31
Abb. 17 Dominantes Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) ............................................................................................................. 32
Abb. 18 Dominantes Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) ............................................................................................................. 32
Abb. 19 Gemeinsames Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) und der Kleinen Wasserlinse (*Lemna minor*) ........................................................................... 33
Abb. 20 Gemeinsames Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) und der Kleinen Wasserlinse (*Lemna minor*) ........................................................................... 33
Abb. 21 Modelle der Reichweite und der Zeitänderungen der Beschattung durch die Dampfschleier (Obst 2015) .................................................................................................. 37
Abb. 22 Änderungen und langfristiger Trend der Summen des Sonnenlichtes innerhalb eines Jahres für die Jahre 1983 – 2013 (Sokol et Řezáčová 2015) .......................................................................................................................... 42
Abb. 24 Verbreitung des Weißflossen-Gründlings (*Gobio albipinnatus*) in der Tschechischen Republik (www.bimonitoring.cz) .................................................................................. 46
Abb. 25 Verbreitung der Bachmuschel (*Unio crassus*) in der Tschechischen Republik (www.bimonitoring.cz) .................................................................................. 47
Abb. 26 Landkarte der Reservoirs an den Flüssen zwischen der NKKA EDU und dem FFH CZ0623819 Rokytná ................................................................. 49

**TABELLENVERZEICHNIS**

Tab. 1 Skala für die Bewertung der Einflüsse nach der Methodik des Umweltministeriums (Roth 2007) .......................................................................................................................... 8
Tab. 2 Naturstandort – Schutzgegenstände im FFH CZ0614134 – Tal des Flusses Jihlava ......................................................................................................................... 18
Tab. 3 Naturstandort – Schutzgegenstände im FFH CZ0614131 – Tal der Flüsse Oslava und Chvojnice ........................................................................................................... 50
Tab. 4 Arten – Schutzgegenstände im FFH CZ0614131 – Tal der Flüsse Oslava und Chvojnice ........................................................................................................... 50
Tab. 5 Naturstandort - Schutzgegenstände im FFH CZ0614133 – Kozének ......................................................................................... 51
Tab. 6 Vogelarten – Schutzgegenstände im VSG CZ0621032 – Thaya-Gebiet ......................................................................................... 52
Tab. 7 Feststellung der Umfänge der Einflüsse auf die Schutzgegenstände der Standorte des Netzwerks Natura 2000 ........................................................................... 54
1. **EINLEITUNG**


Die Bewertung bezieht sich auf das Vorhaben der Errichtung und des Betriebs der Neuen Kernkraftanlage am Standort Dukovany, deren Anzeiger ČEZ, a. s. ist.

In diesem Bericht werden vor allem mögliche Einflüsse der Errichtung und des Betriebs der NKKA EDU im Verhältnis zu den Schutzgegenständen im FFH CZ0614134 - Tal des Flusses Jihlava ausgewertet, das dem zu beurteilenden Vorhaben am nächsten liegt. Außerdem werden potentielle Einflüsse dieses Vorhabens auch für andere, entferntere FFH und VSG bewertet, welche durch die Errichtung und den Betrieb der NKKA EDU eventuell beeinflusst werden könnten.

Die Bewertung ist an die Autorisierung gemäß der Best. § 45i des Gesetzes Nr. 114/1992/GBl., über den Natur- und Landschaftsschutz, in der gültigen Fassung, (siehe Anlage Nr. 1) gebunden.
2. **KURZE BESCHREIBUNG DES VORHABENS**


Der Grund für die Realisierung der neuen Kernkraftanlage ist einerseits die sich nähernde Ende der Lebensdauer der bestehenden Kohlekraftwerke (besonders infolge des beschränkten Vorrats an Braunkohle), welche derzeit die Basis der tschechischen Energiewirtschaft bilden, sodass es nötig sein wird, ihre Leistung zu ersetzen (zum Jahre 2035 geht es um den Ausfall von ca. 4400 MW), andererseits auch das sich nähernde Ende der Lebensdauer des bestehenden Kraftwerks Dukovany (mit einer installierten Leistung von ca. 2040 MW), welches in den nächsten Jahrzehnten die Grenze seiner Lebensdauer erreicht und dessen Leistung ebenfalls zu ersetzen ist.

Ein weiterer bedeutender Grund für die Realisierung der neuen Kernkraftanlage ist die Erhaltung der Kontinuität der Erzeugung der elektrischen Energie am Standort Dukovany, welcher mit allen erforderlichen Bindungen (besonders der wasserwirtschaftliche und elektrische Anschluss), einschließlich der personellen und sozialen Beziehungen, ausgestattet ist.

Die neue Energiequelle wird im Raum, welcher an das Areal des bestehenden Kraftwerkes anschließt, platziert. Die Flächen für den Standort des Vorhabens sind dem beigefügten Situationsplan (Abb. 1) zu entnehmen, also die Fläche für den Standort der Kraftwerksblöcke, die Fläche für den Standort der Baustelleneinrichtung (vorübergehender Charakter) und die Flächen für den Standort des Strom- und wasserwirtschaftlichen Anschlusses. Der Betrieb der neuen Quelle (NKKA EDU) wird mit dem Betrieb bzw. dem Ausscheiden des bestehenden Kraftwerks (EDU1-4) zusammenwirken. Unter den Einflüssen des Vorhabens wird also das Zusammenwirken beider Quellen, die in der Bewertung berücksichtigt ist, verstanden.

Das bewertete Vorhaben betrifft folgende Katastergebiete: Skryje nad Jihlavou, Lipňany u Skryji, Dukovany, Slavětice und Heřmanice u Rouchovan.


Der Lieferant der neuen Kernkraftanlage wird im Verlaufe der nächsten Vorbereitung des Vorhabens gewählt. Der mögliche Lieferant ist derjenige Hersteller, welcher alle gesetzlichen Bedingungen, besonders diejenigen, welche für Kernenergieanlagen verlangt.


**Abb. 1** Situation des Vorhabens der neuen Kernkraftanlage am Standort Dukovany

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – plocha pro umístění elektrárenských bloků, hlavní staveniště</td>
<td>A – Fläche für den Standort der Kraftwerksblöcke, Hauptbaustelle</td>
</tr>
<tr>
<td>B – plocha pro umístění zařízení staveniště</td>
<td>B – Fläche für den Standort der Baustelleneinrichtung</td>
</tr>
<tr>
<td>C – plocha pro umístění elektrického napojení</td>
<td>C – Fläche für den Standort des Stromanschlusses</td>
</tr>
<tr>
<td>D – plocha pro umístění vodohospodářského napojení</td>
<td>D – Fläche für den Standort des wasserwirtschaftlichen Anschlusses</td>
</tr>
<tr>
<td>EDU 1-4 – plocha stávajícího areálu EDU 1 - 4</td>
<td>EDU 1-4 – Fläche des bestehenden Areals EDU 1 - 4</td>
</tr>
</tbody>
</table>
3. **METHODIK**


Neben den eigenen Terrainunterlagen wurden Informationen aus Web-Quellen von der Agentur für Natur- und Landschaftsschutz der Tschechischen Republik (AOPK ČR) benutzt. Es handelt sich vor allem um:

Funddatenbasis von AOPK ČR (NDOP AOPK ČR) [www.portal.nature.cz](http://www.portal.nature.cz/)
Landkarten-Portal [http://mapy.nature.cz/](http://mapy.nature.cz/)
Zentralverzeichnis des Naturschutzes (ÚSOP) [http://drusop.nature.cz/](http://drusop.nature.cz/)

In den Jahren 2013 und 2014 (Kostkan et Laciná 2013a, 2014d) wurden auch Literaturrecherchen vorgenommen, um auch bereits veröffentlichte Daten nicht zu ignorieren.

Die potentiellen Einflüsse des angeführten Vorhabens auf die Schutzgegenstände einzelner Standorte Natura 2000 wurden anhand der in der Tschechischen Republik gemäß der Methodik des Umweltministeriums aus dem Jahr 2007 benutzten Skala ausgewertet (siehe Tab. 1).
Natura-Bewertung der Errichtung und des Betriebs der Neuen Kernkraftanlage am Standort des Kraftwerks Dukovany

Tab. 1 Skala für die Bewertung der Einflüsse nach der Methodik des Umweltministeriums (Roth 2007)

<table>
<thead>
<tr>
<th>Wert</th>
<th>Termin</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| -2   | Wesentlich negativer Einfluss | Negativer Einfluss gemäß Abs. 9 § 45i ZOPK
Er schließt die Realisierung des Vorhabens aus (bzw. das Vorhaben kann nur in den bestimmten Fällen gemäß Abs. 9 und 10 § 45i des Gesetzes über den Natur- und Landschaftsschutz/ZOPK realisiert werden)
Wesentlich störender bis liquidierender Einfluss auf den Standort oder auf die Population der Art oder ihren grundsätzlichen Teil; wesentliche Beeinträchtigung der Umweltansprüche des Standorts oder der Art, wesentlicher Eingriff in das Biotop oder in die natürliche Entwicklung der Art.
Er resultiert aus der Vorgabe des Vorhabens und kann nicht eliminiert werden. |
| -1   | Mäßig negativer Einfluss | Beschränkt/mäßigungswesentlich negativer Einfluss
Er schließt die Realisierung des Vorhabens nicht aus.
Mäßig störender Einfluss auf den Standort oder auf die Population der Art; mäßige Störung der Umweltansprüche des Standorts oder der Art, marginaler Eingriff in das Biotop oder in die natürliche Entwicklung der Art.
Es ist möglich, ihn durch die vorgeschlagenen mäßigenden Maßnahmen zu minimieren. |
| 0    | Nulleinfluss | Das Vorhaben hat keinen nachweislichen Einfluss. |
| +1   | Mäßig positiver Einfluss | Mäßig positiver Einfluss auf den Standort oder auf die Population der Art; mäßige Verbesserung der Umweltansprüche des Standorts oder der Art, mäßiger positiver Eingriff in das Biotop oder in die natürliche Entwicklung der Art. |
| +2   | Wesentlich positiver Einfluss | Wesentlicher positiver Einfluss auf den Standort oder auf die Population der Art; wesentliche Verbesserung der Umweltansprüche des Standorts oder der Art, wesentlicher positiver Eingriff in das Biotop oder in die natürliche Entwicklung der Art. |


Im Rahmen der Natura-Beurteilung sollte nach der Methodik (Roth 2007) neben der Errichtung und dem Betrieb auch die Entsorgung (Demontage) des Vorhabens (des Bauwerks) nach der Beendigung seiner Lebensdauer ausgewertet werden. Im Falle der Beurteilung der Errichtung der NKKA EDU kann man voraussetzen, dass die NKKA EDU zur Energieproduktion mindestens 60 Jahre dienen wird.

Unter der Voraussetzung, dass der erste Block der NKKA EDU im Jahre 2035 und der zweite Block der NKKA EDU nach der Beendigung des Betriebs der jetzigen Blöcke EDU1-4 in Betrieb genommen werden, wird der Betrieb ungefähr im Zeithorizont des Jahres 2110 beendet. In der Etappe der Beendigung des Betriebs werden Inspektionen des Zustandes aller Anlagen, die Ausführung des ausgebrannten Kernbrennstoffes in das Becken des Blocks und nach seiner Abkühlung den durchlaufenden Abtransport in das Lager für den ausgebrannten Kernbrennstoff, die Entwässerung und Trocknung der nicht

Während der nachfolgenden hundertjährigen Periode werden auf die gegenständlichen Populationen und Biotope der Standorte Natura 2000 verschiedene Fakten wirken, wie das Gebietsmanagement, die voraussichtlichen globalen Klimaveränderungen und andere zu diesem Zeitpunkt unvorhersehbare Änderungen, unter deren Einfluss sie sich fortlaufend ändern und entwickeln werden. Die Dynamik der Änderungen kann man nicht einmal bei Kenntnis des jetzigen Zustandes in einem so langfristigen Zeithorizont vorhersehen, sodass nicht festgelegt werden kann, in welchem Zustand und in welcher Struktur (im Hinblick auf den positiven Schutzstatus) die Schutzgegenstände der Standorte des Netzwerks Natura 2000 in der Umgebung der NKKA EDU nach 100 und mehr Jahren sein werden.

Aus diesen Gründen wäre die Beurteilung der Einflüsse der Beendigung des Betriebs des Vorhabens und der Demontage der Technologie völlig formal, rein spekulativ und inkorrekt. Deshalb ist sie in dieser Bewertung nicht enthalten.

Gemäß der Methodik (Roth 2007) sollten ferner die Einflüsse potentieller Havarien auf die Schutzgegenstände bewertet werden. In diesem Falle werden solche Gefahren für den Fall der üblichen Wasserwirtschaftshavarien bewertet, die gegen die Freisetzung der Verunreinigung durch Erdölprodukte (Abscheider der Erdölprodukte) und des Abspülens der Festpartikel (Absetzbecken) gesichert sind.


### 3.1. Überwachte Standorte

Auf der Abb. 1 sind die Entwicklungsf lächen der NKKA EDU markiert, welche den Umfang des durch ihre Errichtung und ihren Betrieb dauerhaft oder vorübergehend (Baustelleneinrichtung) beeinflussten Gebiets darstellen. Als Entwicklungsf lächen werden im Rahmen des Vorhabens der Errichtung der NKKA EDU zusammenfassend die Flächen, auf denen jedwede Bauarbeiten erfolgen werden oder auf denen die Baustelleneinrichtungen platziert werden, und andere Flächen, die im Hinblick auf die Errichtung der NKKA EDU unbedingt notwendig sein werden, bezeichnet.
Abb. 2 Entwicklungsflächen der NKKA EDU in Bezug auf das nächste Gebiet von gemeinschaftlicher Bedeutung in den Entfernungen bis zu 10 bzw. bis zu 20 km von der NKKA EDU
Natura-Bewertung der Errichtung und des Betriebs der Neuen Kernkraftanlage am Standort des Kraftwerks Dukovany

<table>
<thead>
<tr>
<th>Maršovec a Čepička</th>
<th>Maršovec und Čepička</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náměšťská obora</td>
<td>Náměšť-Gehege</td>
</tr>
<tr>
<td>Údoli Oslavy a Chvojnice</td>
<td>Tal der Flüsse Oslava und Chvojnice</td>
</tr>
<tr>
<td>Jedlový les a údolí Rokytné</td>
<td>Tannenwald und Tal des Flusses Rokytná</td>
</tr>
<tr>
<td>Rozvojové plochy NJZ EDU</td>
<td>Entwicklungsflächen der NKKA EDU</td>
</tr>
<tr>
<td>Údoli Jihlavy</td>
<td>Tal des Flusses Jihlava</td>
</tr>
<tr>
<td>Kozének</td>
<td>Kozének</td>
</tr>
<tr>
<td>Biskoupšký kopec</td>
<td>Biskoupšký-Hügel</td>
</tr>
<tr>
<td>Pekárka</td>
<td>Pekárka</td>
</tr>
<tr>
<td>Ve Žlebě</td>
<td>Ve Žlebě</td>
</tr>
<tr>
<td>Široký</td>
<td>Široký</td>
</tr>
<tr>
<td>Krumlovsko – Rokytenské slepence</td>
<td>Krumlov-Gebiet – Rokytenské-Konglomerate</td>
</tr>
<tr>
<td>Krumlovský les</td>
<td>Krumlov-Wald</td>
</tr>
<tr>
<td>Rakšické louky</td>
<td>Rakšické-Wiesen</td>
</tr>
<tr>
<td>Na Kocourkách</td>
<td>Na Kocourkách</td>
</tr>
<tr>
<td>Mikulovický les</td>
<td>Mikulovický-Wald</td>
</tr>
<tr>
<td>Pod Šibeniním kopec</td>
<td>Pod Šibeniním kopec</td>
</tr>
<tr>
<td>U kapličky</td>
<td>U kapličky</td>
</tr>
<tr>
<td>Výrovické kopce</td>
<td>Výrovické-Hügel</td>
</tr>
<tr>
<td>Tvořihrázský les</td>
<td>Tvořihrázský-Wald</td>
</tr>
<tr>
<td>Řeka Rokytná</td>
<td>Fluss Rokytná</td>
</tr>
<tr>
<td>Starý zámek Jevišovice</td>
<td>Altes Schloss Jevišovice</td>
</tr>
<tr>
<td>Jankovec</td>
<td>Jankovec</td>
</tr>
<tr>
<td>U Huberta</td>
<td>U Huberta</td>
</tr>
<tr>
<td>Lapikus</td>
<td>Lapikus</td>
</tr>
</tbody>
</table>

*Conbios s. r. o., Conservation Biology Service*
Abb. 3 Wechselseitige Position der Entwicklungsflächen der NKKA EDU und des FFH CZ0614134 - Tal des Flusses Jihlava


Ein anderes, relativ nahe Gebiet des Netzwerks Natura 2000, ist das FFH CZ0614131 - Tal der Flüsse Oslava und Chvojnice, dessen nächster Rand nordöstlich in einer Entfernung von 7 km und der weiteste Rand 14 km vom Zentrum der NKKA EDU liegen. Als Mitte der NKKA EDU wurde die Entwicklungsfläche A genommen (Abb. 1). Hier gibt es auch einige kleinere Gebiete von gemeinschaftlicher Bedeutung in einer Entfernung bis zu 10 km von der NKKA EDU. Es sind das FFH CZ0614133 – Kozének (7,6 km), das FFH CZ0622150 – Biskupský-Hügel (9,2 km), das FFH CZ0622161 – Ve Žlebě (7,5 km) und das FFH CZ0622179 – Široký (8 km). Im FFH CZ0623707 - Altes Schloss Jevišovice sind Fledermäuse der Schutzgegenstand. Sie sind sehr beweglich, und deshalb können sie auch durch entfer-
tere Vorhaben (ähnlich wie Vögel in Vogelschutzgebieten) wie Pflanzen oder weniger bewegliche Lebewesen beeinflusst werden.

Alle anderen Gebiete von gemeinschaftlicher Bedeutung liegen in einer Entfernung von mehr als 10 km und haben mit dem Gebiet der NKKA EDU keinen Zusammenhang (mit Ausnahme des oben angeführten Gebiets FFH CZ0623819 – Fluss Rokytná, das im Rahmen des Quellengebiets verbunden ist).

Kein Vogelschutzgebiet ist gegenüber der NKKA EDU in einer solchen Position, dass es durch dieses Vorhaben direkt oder indirekt beeinflusst werden könnte. Das nächste Vogelschutzgebiet VSG befindet sich ca. 30 km südlich (VSG CZ0621032 – Podyji) und andere Vogelschutzgebiete sind in einer Entfernung von 40 und mehr Kilometern (siehe Abb. 4).

Mögliche Einflüsse auf die nächstgelegenen FFH und VSG werden in den folgenden Kapiteln analysiert.
Abb. 4 Lage der Vogelschutzgebiete im Hinblick auf die NKKA EDU

<table>
<thead>
<tr>
<th>Podyji</th>
<th>Podyji (Thaya-Gebiet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaroslavické rybníky</td>
<td>Jaroslavické-Teiche</td>
</tr>
<tr>
<td>Pálava</td>
<td>Pálava</td>
</tr>
<tr>
<td>Střední nádrž VD Nové Mlýny</td>
<td>Mittleres Becken des WW Nové Mlýny</td>
</tr>
<tr>
<td>Hvoransko-Čejkovicke</td>
<td>Hvoransko-Čejkovicke</td>
</tr>
<tr>
<td>Lednické rybníky</td>
<td>Lednické-Teiche</td>
</tr>
<tr>
<td>Soutok – Tvrdonicko</td>
<td>Zusammenfluss – Tvrdonicko</td>
</tr>
</tbody>
</table>

3.1.1. FFH CZ0614134 - Tal des Flusses Jihlava

Das Gebiet von gemeinschaftlicher Bedeutung CZ0614134 - Tal des Flusses Jihlava ist ein umfangreiches Gebiet (861,9281 ha), das dem bewerteten Vorhaben der NKKA EDU am nächsten liegt (stellenweise grenzt es unmittelbar an die Entwicklungsflächen der NKKA EDU an), und deshalb ist er bis ins Detail bewertet. Die Gesamtcharakteristik des Gebiets ist von den grundlegenden Informationen zum FFH auf den Webseiten der AOPK ČR übernommen.

Es handelt sich um das tief eingeschnittene Tal des Flusses Jihlava mit zahlreichen Mäandern, mit gefalteten, durch Frostverwitterung entstandenen Felsen und mit aussetzenden
Geröllhalden an steilen Hängen mit zahlreichen Verwitterungsgräben und Schluchten. Von dem Flusstal entfernter findet man mäßige Hänge, Kämme und abschüssige Plateaus.


3.1.2. Schutzgegenstände des FFH - Tal des Flusses Jihlava

Im Hinblick auf das Vorhaben der NKKA EDU ist der nächste Standort des Netzwerks Natura 2000 das verhältnismäßig umfangreiche Gebiet des FFH CZ0614134 - Tal des Flusses Jihlava (861,9281 ha). Dieses Gebiet des FFH ist das Gebiet, auf dem eine Tierart als Schutzgegenstand und acht Naturstandorte (Tab. 2) geschützt werden.

**Abb. 5** Verbreitung des Russischen Bären (Callimorpha quadripunctaria) in der Tschechischen Republik (www.biomonitoring.cz)

<table>
<thead>
<tr>
<th>výskyt druhu</th>
<th>Vorkommen der Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>pole síťového mapování</td>
<td>Feld der Netz-Kartographie</td>
</tr>
<tr>
<td>řeky</td>
<td>Flüsse</td>
</tr>
<tr>
<td>EVL</td>
<td>FFH</td>
</tr>
<tr>
<td>kontinent</td>
<td>Kontinent</td>
</tr>
<tr>
<td>panonikum</td>
<td>Pannonikum</td>
</tr>
<tr>
<td>lesy</td>
<td>Wälder</td>
</tr>
</tbody>
</table>
Tab. 2 Naturstandort - Schutzgegenstände im FFH CZ0614134 - Tal des Flusses Jihlava

<table>
<thead>
<tr>
<th>Standort Nummer</th>
<th>Beschreibung des Standorts/Lebensraums</th>
<th>Gesamtfläche in FFH (ha)</th>
<th>Anteil von der Fläche von FFH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3260</td>
<td>Fließgewässer der planaren bis montanen Stufe mit der Vegetation des Verbände Ranunculion fluitantis und Callitricho-Batrachion</td>
<td>39,1324</td>
<td>4,54</td>
</tr>
<tr>
<td></td>
<td>V4A Makrophyten-Vegetation der Wasserläufe - Bestände der aktuell anwesenden Wassermakrophyten</td>
<td>39,1324</td>
<td>4,54</td>
</tr>
<tr>
<td>6190</td>
<td>pannonische Felsrasen (Stipo-Festucetalia pallentis)</td>
<td>20,2305</td>
<td>2,34</td>
</tr>
<tr>
<td></td>
<td>T3.1 Felsvegetation mit dem Schaf-Schwingel (Festuca pal-lens)</td>
<td>20,2305</td>
<td>2,34</td>
</tr>
<tr>
<td>6210</td>
<td>halbnatürliche Trockengräser und Facies der Gesträuche auf Kalkgrundgesteinen (Festuco-Brometalia)</td>
<td>43,6301</td>
<td>5,06</td>
</tr>
<tr>
<td></td>
<td>T3.3D kontinentale Trockengräser - Bestände ohne bedeutendes Vorkommen von Orchideen</td>
<td>42,6307</td>
<td>4,94</td>
</tr>
<tr>
<td></td>
<td>T3.5B azidophile Trockengräser ohne bedeutendes Vorkommen der Orchideen</td>
<td>0,9994</td>
<td>0,11</td>
</tr>
<tr>
<td>6240</td>
<td>subpannonische Steppenrasen</td>
<td>32,4745</td>
<td>3,76</td>
</tr>
<tr>
<td></td>
<td>T3.3A subpannonischer Steppenrasen</td>
<td>32,4745</td>
<td>3,76</td>
</tr>
<tr>
<td>8220</td>
<td>Silikatfelsen mit Felsspaltenvegetation</td>
<td>14,4289</td>
<td>1,67</td>
</tr>
<tr>
<td></td>
<td>S1.2 Felsspaltenvegetation der Silikatfelsen und Steingerölle</td>
<td>14,4289</td>
<td>1,67</td>
</tr>
<tr>
<td>9170</td>
<td>Eichen-Hainbuchen-Wälder Galio-Carpinetum</td>
<td>197,0109</td>
<td>22,85</td>
</tr>
<tr>
<td></td>
<td>L3.1 Herkynische Eichen-Hainbuchen</td>
<td>197,0109</td>
<td>22,85</td>
</tr>
<tr>
<td>9180</td>
<td>Hang-, Schlucht- und Geröll-MischwälderTilio-Acerion</td>
<td>52,6342</td>
<td>6,10</td>
</tr>
<tr>
<td></td>
<td>L4 Geröllwälder</td>
<td>52,6342</td>
<td>6,10</td>
</tr>
<tr>
<td>9110</td>
<td>Euro-Sibirische Eichen-Steppenwälder</td>
<td>15,3293</td>
<td>1,77</td>
</tr>
<tr>
<td></td>
<td>L6.5A azidophile thermophile Eichenwälder mit dem Behaar-ten Ginster (Genista pilosa)</td>
<td>15,3293</td>
<td>1,77</td>
</tr>
</tbody>
</table>

3.1.3. Standorte im Bezugsgebiet

Im Rahmen der biologischen Untersuchungen in den Jahren 2013 und 2014 wurden ausführliche Untersuchungen der Vegetationsschicht in der Umgebung des EDU und im Rahmen der vorgeschlagenen Entwicklungsflächen der NKKA EDU vorgenommen, und zwar aufgrund der Methodik der Aufnahme der Lebensräume (Guth 2002), welche bei der Bildung des Netzwerks Natura 2000 in der Tschechischen Republik verwendet wurde und welche auch weiterhin bei der Aktualisierungsaufnahme verwendet wird. Dieser Vorgang wurde deshalb ausgewählt, damit es möglich ist, die Lebensräume in den Gebieten auszuwerten, die durch die Errichtung der NKKA EDU im Hinblick auf das nahe Gebiet des FFH CZ0614134 - Tal des Flusses Jihlava betroffen werden können. In dieser Bewertung sind die Ergebnisse der Revisionen der Aufnahme der Lebensräume im Tal des Skryjský-Bachs ausführlich beschrie-
ben, wo die Entwicklungsfläche D an das FFH CZ0614134 - Tal des Flusses Jihlava direkt angrenzt (Abb. 3).

Zu einem anderen potentiellen Einfluss auf das FFH CZ0614134 - Tal des Flusses Jihlava könnte die Beschattung durch den Dampfschleier der Kühltürme der NKKA EDU werden. Der Umfang und die Intensität dieses Einflusses wurden ebenfalls analysiert.


Dieses Biotop ist in der Tschechischen Republik in den Wasserläufen mosaikartig verbreitet, die durch die Regulierung, durch die Potamalisierung (Flussverlangsamung) über den Wehren und durch die Errichtung der Wasserreservors nicht allzu sehr beeinflusst wurden. Die Landkarte mit dem Vorkommen dieses Lebensraums ist der Abb. 6 zu entnehmen.
Abb. 6 Verbreitung des Biotops V4A - Makrophyten-Vegetation der Wasserläufe in der Tschechischen Republik (www.biomonitering.cz)

<table>
<thead>
<tr>
<th>výskyt habitatu</th>
<th>Habitatvorkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td>pole síťového mapování</td>
<td>Feld der Netz-Kartographie</td>
</tr>
<tr>
<td>řeky</td>
<td>Flüsse</td>
</tr>
<tr>
<td>EVL</td>
<td>FFH</td>
</tr>
<tr>
<td>kontinent</td>
<td>Kontinent</td>
</tr>
<tr>
<td>panonikum</td>
<td>Pannonikum</td>
</tr>
<tr>
<td>lesy</td>
<td>Wälder</td>
</tr>
</tbody>
</table>
4. **FESTGESTELLTE EINFLÜSSE**

4.1. FFH CZ0614134 - Tal des Flusses Jihlava

Wie oben angeführt, greift keine der Entwicklungsflächen direkt in das FFH CZ0614134 - Tal des Flusses Jihlava ein.

4.1.1. Einflüsse im Zusammenhang mit der Entwicklungsfläche D

Wie die Landkarte auf Abb. 3 belegt, ist dem Gebiet des FFH CZ0614134 - Tal des Flusses Jihlava die Entwicklungsfläche D am nächsten, welche die Infrastruktur der Wasserwirtschaft der NKKA EDU darstellt.


Zur Sicherung der Flächen innerhalb des Gebiets des FFH ist der Korridor der Abwasserabführung der NKKA EDU, der an die Grenze des FFH angrenzt, außerhalb seiner Grenze und in genügender Breite, damit er sämtlichen notwendigen Raum für die Errichtung (also einschließlich des Raums für die Bewegung der Baumaschinen und der Erdmassen) einschließt und damit keine Bauaktivitäten in das FFH direkt eingreifen. Dieser Korridor wird durch das Tal des Skryjský-Bachs geführt, der die Grenze der Entwicklungsfläche und des FFH CZ0614134 - Tal des Flusses Jihlava (siehe Abb. 3 und Abb. 7) bildet und der derzeit als Rezipient der Abwässer aus dem Areal des bestehenden Kraftwerks EDU dient. Im Hinblick auf die erhöhten Temperaturen des von den Kühltürmen abfließenden Wassers ist er gegenüber dem natürlichen Zustand markant verarmt.

Der Skryjský-Bach ist fast im gesamten Grenzabschnitt mit Betonrinnenpflaster (Abb. 7) ausgepflastert und steckt die Grenze gut ab. An seinem rechten Ufer (innerhalb des FFH) gibt es natürliche Lebensräume, im Raum zwischen dem Wasserlauf und der Anliegerstraße befindet sich der enge Uferbestand, an den ein Band anschließt, das mit nicht allzu wertvollen Lebensräumen der sekundären (sukzessiven) Gemeinschaften mit einem hohen Anteil an ruderalen und Pionierarten von Pflanzen und auch Gehölzen bedeckt ist.

Im Hinblick auf die Unklarheiten in der Bestimmung der Lebensräume – der Schutzgegenstände des FFH CZ0614134 - Tal des Flusses Jihlava gemäß den Quellen der AOPK (Abb. 8) wurde eine ausführliche Bestandsaufnahme der Lebensräume im betroffenen Gebiet im Jahre 2013 durchgeführt, die den Stand und die Lage der einzelnen Lebensräume mit Hilfe eines GPS-Geräts mit garantiert der Genauigkeit von 5 m präzisierte. Die Ergebnisse sind in der Abb. 9 graphisch dargestellt.
Abb. 7 Skryjský-Bach – Grenzabschnitt zwischen der Entwicklungsfläche D und dem FFH - Tal des Flusses Jihlava

Abb. 8 Vorkommen der Lebensräume – der Schutzgegenstände FFH CZ0614134 - Tal des Flusses Jihlava im Grenzabschnitt mit der Entwicklungsfläche D nach Quellen der AOPK ČR

<table>
<thead>
<tr>
<th>směs</th>
<th>Gemisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozvojová plocha</td>
<td>Entwicklungsfläche</td>
</tr>
</tbody>
</table>

Abb. 9 Vorkommen der Lebensräume – der Schutzgegenstände des FFH

Die Lebensräume L3.1., L4 und T3.1., die durch die ausführliche Aufnahme in nächster Nähe der Baustelle (der Entwicklungsfläche D) festgestellt wurden, können im Verlaufe der Errichtung durch den Staub von der Baustelle betroffen werden, sofern diese Verunreinigungsquelle nicht rechtzeitig eliminiert wird. Der Staub von der Baustelle wird nicht den Charakter von, von den Bodenpartikeln chemisch abweichender Stoffe haben und er kann die Photosynthese der Pflanzen nur kurzfristig beeinflussen. Das Gebiet, das durch diesen Einfluss betroffen werden kann, ist nicht größer als 1000 m² für das Biotop L4 (0,02 % der Gesamtfläche im Biotop) und es kann maximal hunderte Quadratmeter für die Lebensräume

<table>
<thead>
<tr>
<th>Plocha D</th>
<th>Fläche D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozvojová plocha</td>
<td>Entwicklungsfläche</td>
</tr>
</tbody>
</table>
L3.1. (weniger als 0,001 % der Gesamtfläche des FFH) und T3.1 (weniger als 0,05 % der Gesamtfläche des FFH) erreichen. Außerdem handelt es sich um vorübergehende Einflüsse, die nicht länger als eine Vegetations saison fort dauern, in der sie entstehen können.

Die Uferbestände des Skryjský-Bachs im Grenzgebiet der Entwicklungsfläche D und des FFH wurden als Biotope L2.2 (Erlen-Eschenalauen) ausgewertet, das im FFH CZ0614134 - Tal des Flusses Jihlava kein Schutzgegenstand ist.


4.1.2. Einflüsse auf die Lebensräume im Fluss Jihlava

Das Wasserspeicherer Moehlno als künstliche Wasserfläche, die durch die Schwankung im Rahmen des Regimes des Umpumpens im System Moehlno–Dalešice stark beeinflusst wird, ist Rezipient der Abwässer aus dem jetzigen und auch künftigen Betrieb des EDU und kein Bestandteil des FFH CZ0614134 - Tal des Flusses Jihlava.


Sämtliche neu abgeleitetes Regenwasser aus dem Areal NKKA EDU wird vor dem Ablassen in den Rezipienten in Behältern für das Auffangen eventueller Freisetzungen der Erdöl- und Feststoffe vorgereinigt und die Qualität des abfließenden Regenwassers wird regelmäßig überwacht.

Neben den oben angeführten Maßnahmen direkt im Areal der NKKA EDU wird die Sicherheit des Flusses Jihlava unterhalb des WR Moehlno auch durch das Wasserspeicherer selbst gesichert. Im Falle jedweder Freisetzung von Fest- oder Erdölstoffen wird diese Verunreinigung hierin aufgefangen (feste Stoffe werden sedimentiert und Erdölstoße gelangen nicht zum unteren Auslass des Wasserspeicherer), sodass sie nicht in jenen Abschnitt vordringt, wo der Fluss Jihlava ein Bestandteil des FFH CZ0614134 - Tal des Flusses Jihlava ist.


Diesem Biotop und seinem Vorkommen im Rahmen des gesamten Abschnitts des Flusses Jihlava im Rahmen des FFH (konkret vom Damm des Wasserspeicherer Moehlno, Flusskilometer 59,2, bis zur Straßenbrücke an der Verbindungslinie der Gemeinden Biskoupky und
Hrubšice, Flusskilometer 46,8) wurde die Geländeuntersuchung der Makrophyten (Kostkan 2013c, 2014b) gewidmet. Sie wurde am 27. 8. 2013 und am 10. 9. 2014 realisiert.


Im Jahre 2013 begann die Rotalge Hildebrandia rivularis, sich unter dem Wehr an der Mohelno-Mühle auf den Steinen im Fluss zu vermehren, die in einigen Abschnitten unten stromabwärts auch mehr als 50 % der Fläche der Flusssohle bedeckte. Im Jahre 2014 war das Vorkommen der Rotalge Hildebrandia rivularis markanter, was auch durch das spätere Datum der Untersuchung im Jahre 2014 im Vergleich zum Jahr 2013 verursacht werden konnte.

Batrachium fluitans beginnt, vom Flusskilometer 53,6 im Fluss Jihlava in den beiden Jahren der Untersuchung an, im Prinzip gleicher Stelle aufzutreten, sodass die Dominanz zunimmt und das Vorkommen der makroskopischen Algen und Moose unten stromabwärts mehr als 50 % der Fläche der Flusssohle bedeckte. Im Jahre 2014 war das Vorkommen der Rotalge Hildebrandia rivularis markanter, was auch durch das spätere Datum der Untersuchung im Jahre 2014 im Vergleich zum Jahr 2013 verursacht werden konnte.


Abb. 10  Verfolgte Abschnitte des Flusses Jihlava und Bodendeckung der Hauptvertreter der Makrophyten (\%) in einzelnen Teilen (2013)
<table>
<thead>
<tr>
<th>ÚSEK</th>
<th>ABSCHNITT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKROSKOPIČKÉ ŘASY</td>
<td>MAKROSKOPISCHE ALGEN</td>
</tr>
<tr>
<td>MECHOROSTY</td>
<td>MOOSE</td>
</tr>
<tr>
<td>HIDEBRANDIA</td>
<td>HILDEBRANDIA</td>
</tr>
<tr>
<td>LAKUŠNIK</td>
<td>FLUTENDER HAHNENFUSS</td>
</tr>
<tr>
<td>OKŘEHEK</td>
<td>KLEINE WASSERLINSE</td>
</tr>
</tbody>
</table>

__Conbios s. r. o., Conservation Biology Service__
Abb. 11 Verfolgte Abschnitte des Flusses Jihlava und Bodendeckung der Hauptvertreter der Makrophyten (%) in einzelnen Teilen (2014)
In der litoralen Küstenzone des Flusses Jihlava traten in dem verfolgten Abschnitt von den Emersionswassermakrophyten (d.h. Gattungen mit Blättern über dem Wasserspiegel) am meisten das Rohrglanzgras (*Phalaris arundinacea*), der Wasser-Dampfschleier (*Glyceria maxima*), die invasive Gattung Drüsiges Springkraut(*Impatiens glandulifera*) und die Vertreter aus der Gattung Riedgräser (*Carex*) auf.

Der Lauf des Flusses Jihlava unter dem WR Mohelno ermöglicht eine stärkere Entwicklung der makroskopischen Pflanzenarten. Der Hauptgrund dieser Entwicklung sind verhältnismäßig stabile physikalische Umgebungsbedingungen, vor allem die Temperatur- und Durchflussbedingungen, von denen die Entwicklung der Makrophytenvegetation mäßig abhängig ist.

Extreme hydrologische Erscheinungen (Hochwasser, extreme Trockenheit), welche die Entwicklung der Makrovegetation bedeutend einschränken, werden durch den Einfluss des Wasserreservoirs Dalešice - Mohelno in hohem Maße eliminiert. Erwärmtes Wasser aus dem EDU, das im WR Mohelno (auch in größerem Volumen nach der geplanten Errichtung der NKKA EDU) zugeleitet wird, hat und wird keinen bedeutenden negativen Einfluss auf die Entwicklung der Makrophytenvegetation haben. Das Vorhaben wird deshalb keinen negativen Einfluss auf die Entwicklung der Makrovegetation haben. Wenn das abfließende Wasser aus dem WR Mohelno einen ähnlichen Charakter (Temperatur, Chemie) wie heute hat, ist es möglich, dass sich die Bodendeckung und die Gesamtbiomasse dieser Gemeinschaften sogar erhöht.

Die Bestände der Wasserpflanzen werden auf den folgenden Abbildungen (Abb. 12 bis Abb. 20) dokumentiert.

**Abb. 12  Vorkommen der makroskopischen Algen mit dem Übergewicht der Gattung Voucheria unter dem Wasserwerk Mohelno**
Abb. 13  Gemeinsames Vorkommen der Moose und der Rotalge *Hildebrandia rivularis*

Abb. 14  Abschnitt des Flusses Jihlava mit dem Übergewicht der Rotalge *Hildebrandia rivularis*
Abb. 15  Gemeinsames Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) und der Rotalge (*Hildebrandia rivularis*)

Abb. 16  Detailansicht des Bestandes des Flutenden Wasserhahnenfußes (*Batrachium fluitans*)
Abb. 17 Dominantes Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*)

Abb. 18 Dominantes Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*)
Abb. 19  Gemeinsames Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) und der Kleinen Wasserlinse (*Lemna minor*)

Abb. 20  Gemeinsames Vorkommen des Flutenden Wasserhahnenfußes (*Batrachium fluitans*) und der Kleinen Wasserlinse (*Lemna minor*)
4.1.3. Infolge der Beschattung durch den Dampfaustritt hervorgerufene Einflüsse


Für die Feststellung des möglichen Umfangs und Einflusses durch die Änderung der mikroklimatischen Charakteristiken, einschließlich der Beschattung des Gebiets durch den Dampfschleier, wurden vor allem Berechnungen und Modelle benutzt, die vom Institut für die Physik der Atmosphäre der Akademie der Wissenschaften der Tschechischen Republik im März 2015 als Grundlage für diesen Bewertungsbeit erstellt wurden (Sokol et Řezáčová 2015). Einen Bestandteil der angegebenen Studie bilden die Modelle der Beschattung der Landschaft in der Umgebung des EDU, die durch die Berechnung mit Hilfe des Modells CT-PLUME/EDU und unter Verwendung folgender Angaben durchgeführt wurden:

(a) meteorologische Daten, welche die Berechnung der vertikalen Profile der Temperatur, der Feuchtigkeit, der Richtung und der Geschwindigkeit des Windes für den erwogenen Standort ermöglichen;
(b) Angaben über die Position und Geometrie des studierten Systems der Kühltürme;
(c) Angaben über die Charakteristiken der Luft, die durch die Mündung der Türme austritt, in Abhängigkeit von der Temperatur und von der relativen Feuchtigkeit der Umgebung.

Die meteorologische Daten für die Berechnung wurden von der meteorologischen Station in Dukovany benutzt, die Raumcharakteristiken (Standort und Höhe der geplanten Kühltürme der NKKA EDU im Kontext mit der Position der bestehenden Kühltürme des EDU) und Angaben über die Charakteristiken der Luft am Austritt der Türme wurden auf der Grundlage der von ÚJV Řež, a. s. (Institut für Atomforschung Řež, AG) – Geschäftsbereich Energoprojekt Praha gelieferten Daten modelliert.

Ins Modell für die Berechnung der Beschattung durch den Dampfschleier wurden die Daten über die Gesamtbevölkerung in der Umgebung des EDU, über die Richtung und Geschwindigkeit des Windes, über die Feuchtigkeit, welche die Menge des nicht zerstreuten Dampfes beeinflusst, und die Position und die Höhe der Sonne über dem Horizont eingeschlossen.

Der Hauptgegenstand des Interesses war das FFH CZ0614134 - Tal des Flusses Jihlava, weil es sich zur NKKA EDU von allen FFH am nächsten befindet, und zwar vor allem jene Teile, die vom hohen Maß der Sonneneinstrahlung und vom Empfang der Sonnenstrahlung abhängig sind. Es handelt sich vor allem um die Steffenstandorte, also wärmeliebende und Trockenheit liebende Gemeinschaften (T3.1 Trockene Heidegebiete der Tiefebenen und Hügelländer mit dem Vorkommen des Gemeinen Wacholders (Juniperus communis), T3.3D Kontinentale Trockengräser - Bestände ohne bedeutendes Vorkommen von Orchideen, T3.5B Azidophile Trockengräser ohne bedeutendes Vorkommen von Orchideen, T3.3A Subpannonische Steppengräser, S1.2 Felsspaltenvegetation der Silikatfelsen und Steingerölle.


Modelle, die vom Institut für Physik der Atmosphäre der Akademie der Wissenschaften der Tschechischen Republik im Juni 2015 erstellt wurden (Sokol et Řezáčová 2015), belegen, dass die Änderungen des Mikroklimas, die durch die Dampfproduktion in den Kühltürmen hervorgerufen werden, vor allem in der dichten Nähe des Kraftwerks EDU selbst bzw. der NKKA EDU in Erscheinung treten. Im Hinblick auf die relative Nähe des NPR Mohelno-Serpentin-Steppe und des FFH CZ0614134 - Tal des Flusses Jihlava wurde das Modellieren bis zum Raum dieser Gebiete erweitert.


Angesichts dessen, dass den größten Einfluss auf die Flora und Fauna im Gebiet die Sonnenstrahlung im Verlaufe der Vegetationsperiode hat, haben die Autoren der Studie (Sokol et Řezáčová 2015) die mögliche Beschattung des Gebiets durch den Dampfschleier auch nur für die Vegetationsperiode modelliert. Die potentielle mögliche Beschattung in der Vegetationsperiode liegt im Bereich von 0,025 Stunden bis 0,075 Stunden pro Tag (also 1:30 Minuten bis 4:30 Minuten), wobei sich die Reichweite des potentiell abgeblendeten Gebiets ver-
schmälert. Das ist dadurch verursacht, dass die Sonne in der Vegetationsperiode höher über dem Horizont steht und sich die Länge des durch den Dampfschleier in Richtung Norden (also zum empfindlichen Gebiet) geworfenen Schattens verkürzt.
Abb. 21 Modelle der Reichweite und der Zeitänderungen der Beschattung durch die Dampfschleier (Obst 2015)
4.1.4. **Einflüsse im Zusammenhang mit der Verkehrslast während der Errichtung**

Der vorausgesetzte Anstieg der Verkehrsintensität während der Errichtung eines Blocks ist auf das maximale Niveau von 1500 Fahrzeugen/24 h (davon 300 schwere Fahrzeuge) bezogen. In der Peak-Zeit des Gleichlaufs von zwei Blöcken wird der Anstieg der Verkehrsintensität 2500 Fahrzeuge/24 h (davon 450 schwere Fahrzeuge) betragen. Die am Ort übliche Intensität auf der Straße II/152 beträgt ca. 2600 Fahrzeuge/24 h (davon 360 schwere Fahrzeuge) (Mynář 2015).

Vom Gesichtspunkt der Lärmbelastung bedeutet das einen Anstieg des Lärms um die Straße II/152 um 2,2 dB, eventuell bis um 3,3 dB im Vergleich zum jetzigen Zustand.
In der Streuungsstudie (Bartoš 2014) erreichen die Beiträge der beurteilten Linienquellen des Materialtransports bei der Errichtung der NKKA relativ niedrige Werte. Der Beitrag zur kurzfristigen maximalen Belastung durch Stickstoffdioxid beträgt maximal 6 µg.m⁻³, die Beiträge zur durchschnittlichen Jahreskonzentration betragen dann bis zu 0,6 µg.m⁻³. Die durch die Berechnung festgestellten Beiträge zur durchschnittlichen Jahreskonzentration von Benzol können maximal 0,02 µg.m⁻³, die Beiträge zur durchschnittlichen Jahreskonzentration von Benzo(a)pyren maximal 0,04 ng.m⁻³ erreichen. Die maximalen Beiträge werden am Ort der Zufahrtsstraße zur Baustellenfläche und weiter entlang der Haupttransportroute erreicht.

Es handelt sich um einen Anstieg um maximal einzelne Prozent der legislativen Limits, der im Hinblick auf das Perspektiniveau der Immissionsbelastung die Belastung des Einzugsgebiets durch diese Schadstoffe nicht in grundsätzlicher Weise ändert. Insgesamt setzen wir also bei den gasförmigen Schadstoffen weder eine wesentlichere Beeinflussung der perspektiven Immissionssituationen erwartet.

Außerhalb des Einzugsgebiets kann man die Verteilung des hervorgerufenen Verkehrs auf ein breiteres Kommunikationsnetz erwarten, man kann so markant niedrigere Beiträge ohne grundsätzliche Beeinflussung der perspektiven Immissionssituationen erwartet.

Sämtliche Modellwerte der Emissionen aus dem Verkehr sinken nach der Beendigung der Errichtung (während des Betriebs) auf etwa 10 % jener Werte, die für die Errichtungsphase angegeben sind.

Im Gebiet der geplanten Errichtung der NKKA EDU und in seiner Umgebung sind keine bestehenden Betriebe und keine Bauvorhaben bekannt, deren Verkehrseinflüsse mit den Einflüssen der Errichtung und des Betriebs der NKKA EDU kumulieren könnten.

Der mit der Errichtung der NKKA EDU verbundene Verkehr belastet vor allem die Straße II/152, die in minimaler Entfernung von 750 m von der südlichen Grenze des FFH CZ0614134 - Tal des Flusses Jihlava verläuft. Weder der Lärm, noch die Emissionen aus dem erhöhten Verkehr werden negativen Einfluss auf diesen Standort haben.

Der Anstieg des Verkehrs im Zusammenhang mit dem Baugeseheben auf der Straße II/392, welche durch das FFH CZ0614134 - Tal des Flusses Jihlava führt, wird wesentlich geringer sein. Es wird ein Anstieg der Intensität um 65 Fahrzeuge/24 h (davon 24 schwere Fahrzeuge) vorausgesetzt. Das bedeutet einen Anstieg gegenüber dem jetzigen Zustand (653 Fahrzeuge/24 h (davon 140 schwere Fahrzeuge)) um 10 % bei der Gesamtanzahl und um 18 % bei schweren Fahrzeugen (Bartoš 2014).

Die Immissions- und Lärmsituation im FFH (bei Aufrechterhaltung der vorausgesetzten Anzahl der Fahrzeuge) wird dadurch nicht bedeutend beeinflusst.

4.1.5. Kumulative Einflüsse der Realisierung des Vorhabens NKKA EDU auf das FFH CZ0614134 - Tal des Flusses Jihlava

Im Gebiet der geplanten Errichtung der NKKA EDU und in seiner Umgebung sind keine bestehenden Betriebe und keine Bauvorhaben bekannt, deren Einflüsse mit den Einflüssen der Errichtung und des Betriebs der NKKA EDU kumulieren könnten.
4.1.6. Kumulative Einflüsse des Betriebs von EDU und des Vorhabens NKKA EDU auf FFH CZ0614134 - Tal des Flusses Jihlava


4.1.7. Kumulative Einflüsse des Betriebs der NKKA EDU und des Modells der klimatischen Veränderungen auf das FFH CZ0614134 - Tal des Flusses Jihlava

Der Betrieb eines Kernkraftwerks ist eine sanfte Energiequelle in Bezug auf die Entwicklung der Klimaänderungen, da es weder Kohlendioxid noch ein anderes relevantes Gas produziert, das zum Treibhauseffekt beiträgt.


Das größte potentielle Problem für einige Biotope des FFH CZ0614134 - Tal des Flusses Jihlava (Biotope im Fluss Jihlava unter dem WR Mohelno) könnten der reduzierte, durch


Der in dieser Weise gesicherte Durchfluss gewährleistet die Nichtbeeinträchtigung der Biotope - der Schutzgegenstände im Strombett der Jihlava unter dem WR Mohelno. Wie die hydrobiologischen Untersuchungen nachgewiesen haben, kann die langfristige Stabilisierung der Durchflüsse in der Jihlava diesen Biotopen im Gegenteil zugutekommen, weil sie durch die natürlichen Disturbationsprozesse nicht gestört werden, zu denen vor allem Hochwassererscheinungen und Eisgänge gehören, welche die Bodensedimente erheblich beeinträchtigen, in denen die Gemeinschaften der höheren Pflanzen wurzeln, welche die Basis des Schutzgegenstands des Biotops V4A - Makrophyten-Vegetation der Wasserläufe - Bestände der aktuell anwesenden Wassermakrophyten im FFH CZ0614134 - Tal des Flusses Jihlava darstellen.

Die verlaufende Klimaänderung hat und wird in der Zukunft einen kumulativen Einfluss auch auf die mikroklimatischen Einflüsse des EDU und der NKKA EDU auf ihre Umgebung, einschließlich des FFH CZ0614134 Tal des Flusses Jihlava, haben. Auf der Grundlage der Daten, die in der Wetterstation ČHMU in Dukovany gewonnen wurden, ist feststellbar, inwieweit sich die langfristige Gesamtenergiebilanz im Gebiet (Menge der Energie in der einfallenden Sonnenstrahlung) ändert. Es wurde die Kumulation der vorausgesetzten Abnahme der einfallenden Strahlung durch den Einfluss der Beschattung infolge des Dampfschleiers und der Änderung im Energieeingang in das Gebiet modelliert, die durch die aktuellen Summen des Sonnenscheins verursacht wird. Der langfristige Trend der Entwicklung der Gesamtmenge der Sonnenstrahlung ist auf Abb. 22 abgebildet.

| úhrny slunečního svitu ve vegetačních obdobích let 1983 - 2013 (S_{veg}) | Summen des Sonnenlichtes in den Vegetationsperioden der Jahre 1983 - 2013 (S_{veg}) |
| jednáctiletý klouzavý průměr úhrnů slunečního svitu ve vegetačních obdobích let 1983 - 2013 (A_{11, Sveg}) | elfjähriger gleitender Durchschnitt der Summen des Sonnenlichtes in den Vegetationsperioden der Jahre 1983 - 2013 (A_{11, Sveg}) |

Das Modellieren der möglichen Änderung der Gesamtsonnenstrahlung, der einfallenden Strahlung im Gebiet geht von der theoretisch ungünstigsten Konstellation der Witterungseinflüsse aus, welche folgendes umfasst:

- Windströmung, welche die Dampffahne zwischen die Sonne und das bewertete Gebiet richtet,
- höhere Feuchtigkeit, bei der sich die Dampffahne nicht auflöst,
- die beiden obigen Faktoren treffen in den Stunden (SpätNachmittag) zusammen, wenn die Sonne über dem Horizont genügend niedrig steht, sodass die Dampffahne den Schatten im FFH werfen kann.

In das Modell der Entwicklung der Summe des Sonnenlichts projizierte Obst (2015) ferner die durch den Dampfschleier des jetzigen Kernkraftwerks EDU verursachten Einflüsse der Beschattung und die vorausgesetzten Einflüsse der NKKA EDU (Abb. 23).


Das empfindlichste Gebiet in der Nähe der NKKA EDU ist das Naturreservat NPR Mohelno-Serpentinit-Steppe als wertvollster Bestandteil des FFH CZ0614134 - Tal des Flusses Jihlava. In diesem Gebiet erreicht der Abbau der einfallenden Energie, der durch die
Beschattung durch den Dampfschleier der NKKA EDU hervorgerufen wird, Zehntelprozente bis zu einem Prozent, was den Werten des Gesamtenergieeingangs der Sonnenstrahlung in den Jahren 2006 - 2008 entspricht.

Derart niedrige Werte der Änderungen der Strahlung liegen nicht nur an der Grenze der Messbarkeit der Intensität dieser Einflüsse (und zwar nur unter speziellen Bedingungen, die als mögliche schlechteste Kombination aller Witterungsfaktoren modelliert werden), sondern es werden derzeit auch keine Änderungen der Struktur der Pflanzen- und Tiergemeinschaften nachgewiesen, welche durch die so geringfügigen Änderungen verursacht werden. Aus den Graphen in Abb. 22 und Abb. 23 ist zugleich sichtbar, dass die Änderungen der einfallenden Strahlung in der Größenordnung einzelner Prozente die übliche Schwankung innerhalb eines Jahres darstellen.

Im Hinblick auf die minimale statistische Wahrscheinlichkeit der Entstehung der Modellsituationen, wonach die oben angeführten Witterungs- und Zeitbedingungen (Windrichtung, Feuchtigkeit, während eines Teils des Tags kann es zur Beschattung kommen) während einer Vegetationsperiode zustande kommen, handelt es sich um vereinzelt, kurzfristige und sehr mäßige, die auf die Vegetation nicht nachweisbare Einflüsse, die im Vergleich zur Schwankung des Wetters und zu den langfristig überwachten Klimaänderungen im Gebiet vernachlässigbar sind (siehe Abb. 22 und Abb. 23).

Bei der Bewertung der kumulativen Einflüsse wurden die Kombinationen der Kumulationen der mikroklimatischen Einflüsse der NKKA EDU (Beschattung), die verlaufende Klimaänderung und die atmosphärischen Depositionen (Immissionen) des Stickstoffs erwogen, deren Menge seit den 80er Jahren des zwanzigsten Jahrhunderts bis zum Beginn dieses Jahrhunderts eine steigende Tendenz hatte. Dieser Trend mäßigte sich zu Beginn der 90er Jahre des zwanzigsten Jahrhunderts mit der Änderung der Technologie der Kohleverbrennung in den Kohlekraftwerken und auch mit dem Abbau der großen Luftverunreinigungsquellen (Energiewirtschaft, chemische und Schwerindustrie), jedoch setzte sich die wachsende Tendenz bis zum Beginn des 21. Jahrhunderts aufgrund der rasch wachsenden Anzahl der Kraftfahrzeuge mit ungeeigneter Struktur (überwiegend veralteter Fuhrpark) fort.

Die atmosphärischen Depositionen des Stickstoffs weisen in den letzten 10 Jahren einen stabilen bis leicht rückgängigen Trend auf, wobei dessen Maxima in den Gebieten der tschechischen Gebirge (vor allem durch den Einfluss der nassen Deposition), ferner in den Gebieten der größeren Städte (Prag, Brno, Ostrava) und entlang der meistbelasteten Straßen, vor allem entlang der Autobahn D1, zu beobachten sind. Dieser leicht sinkende Trend ist im Einklang mit den ausgewiesenen Emissionen der Stickstoffoxide sowohl auf landesweitem Niveau, als auch auf dem Niveau der Region Vysočina spürbar, wobei die wichtigsten Quelle der Emissionen der Stickstoffoxide der Verkehrssektor (bis zu 80 % der Gesamtemissionen) ist. Der beobachtete Abbau der Emissionen kann auch trotz der sich erhöhenden Verkehrsintensitäten durch die Reduzierung der Emissionen der Automobilmotoren (aus der Verbrennung der Kraftstoffe) erklärt werden, die durch die Entwicklung der Struktur des Verkehrsstroms (Zusammensetzung des Fuhrparks nach Erfüllung der Norm EURO) hervorgerufen wird. Im Hinblick auf die bestehende Entwicklung der Emissionsnormen für Verbrennungsmotoren der Fahrzeuge und auf die natürliche Änderung des Fuhrparks ist es auch weiterhin möglich, die Fortsetzung der sinkenden Entwicklung der Emissionen der Stickstoffoxide zu erwarten. Dieser Rückgang kompensiert dann vollständig sowohl den erwarteten Einfluss der natürlichen Zunahme der Verkehrsintensitäten im Gebiet in den künftigen Jahren, als auch den Einfluss der Zunahme der Verkehrsintensitäten selbst, die durch den Betrieb der NKKA EDU hervorgerufen wird.
Wie bereits erwähnt, stellen die sog. nassen Depositionen (vertikale und auch horizontale Niederschläge) den Hauptanteil an den Depositionen des Stickstoffs aus der Atmosphäre. Da sich das Gebiet des FFH CZ0614134 - Tal des Flusses Jihlava in geringer Meereshöhe befindet und die Summen der Niederschläge hier niedrig sind, ist auch das Gesamtvolumen der Stickstoffemissionen minimal.

Im Hinblick auf die heutige Situation kann der Einfluss der Realisierung der NKKA EDU auf die Umluftqualität (Immissionskonzentrationen der Stickstoffoxide) und somit auch auf die atmosphärische Deposition des Stickstoffs als absolut unbedeutend erachtet werden.

4.2. Andere Gebiete des Netzwerks Natura 2000

Übersicht anderer Gebiete des Netzwerks Natura 2000, die unter dem Aspekt der Möglichkeit des Einflusses der Errichtung und Betriebs der NKKA EDU bewertet wurden, unter Angabe der Entfernung vom zentralen Teil der NKKA EDU (Entwicklungsfläche A, siehe Abb. 1 und Abb. 2, Abb. 4)

- FFH CZ0623819 – Fluss Rokytná (7,5 – 14 km, liegt im Sammelgebiet unterhalb der NKKA EDU)
- FFH CZ0614131 – Tal der Flüsse Oslava und Chvojnice (7 bis 14 km von der NKKA EDU)
- FFH CZ0614133 – Kozének (7,6 km)
- FFH CZ0622150 – Biskoupský-Hügel (9,2 km)
- FFH CZ0622161 – Ve Žlebě (7,5 km)
- FFH CZ0622179 – Široký (8 km)
- FFH CZ0623707 – Altes Schloss Jevišovice (15 km)
- VSG CZ0621032 – Thaya-Gebiet (40 km)

4.2.1. FFH CZ0623819 - Fluss Rokytná

Das Gebiet von gemeinschaftlicher Bedeutung CZ0623819 - Fluss Rokytná stellt einen einige zig Kilometer langen Abschnitt des Flusses Rokytná dar (die Gesamtfläche beträgt 123,6679 ha) und die Schutzgegenstände sind hier zwei Arten der Wassertiere: Weißflossen-Gründling (Gobio albipinnatus), deren Anzahl nicht genau festgestellt ist, und Bachmuschel (Unio crassus), deren Anzahl im Rahmen des FFH auf Hunderte Einzelexemplare geschätzt wird. Die Verbreitung der angeführten Arten im Rahmen der Tschechischen Republik ist in der Abb. 24 und Abb. 25 dargestellt.
Abb. 24 Verbreitung des Weißflossen-Gründlings (*Gobio albipinnatus*) in der Tschechischen Republik (www.biomonitoring.cz)

<table>
<thead>
<tr>
<th>výskyt druhu</th>
<th>Auftreten der Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>pole síťového mapování</td>
<td>Feld der Netz-Kartographierung</td>
</tr>
<tr>
<td>řeky</td>
<td>Flüsse</td>
</tr>
<tr>
<td>EVL</td>
<td>FFH</td>
</tr>
<tr>
<td>kontinent</td>
<td>Kontinent</td>
</tr>
<tr>
<td>panonikum</td>
<td>Pannonikum</td>
</tr>
<tr>
<td>lesy</td>
<td>Wälder</td>
</tr>
</tbody>
</table>
Abb. 25 Verbreitung der Bachmuschel (*Unio crassus*) in der Tschechischen Republik ([www.biomonitoring.cz](http://www.biomonitoring.cz))

<table>
<thead>
<tr>
<th>výskyt druhu</th>
<th>Auftreten der Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>pole síťového mapování</td>
<td>Feld der Netz-Kartographierung</td>
</tr>
<tr>
<td>řeky</td>
<td>Flüsse</td>
</tr>
<tr>
<td>EVL</td>
<td>FFH</td>
</tr>
<tr>
<td>kontinent</td>
<td>Kontinent</td>
</tr>
<tr>
<td>panonikum</td>
<td>Pannonikum</td>
</tr>
<tr>
<td>lesy</td>
<td>Wälder</td>
</tr>
</tbody>
</table>


Olešná bei der Gemeinde Rešice. All diese Wasserreservoire ermöglichen, bei Havarien ein eventuelles Austreten des Wassers mehr als 8 km gegen den Strom von Olešná über dessen Mündung in Rokytná aufzufangen. Die Situation ist der Abb. 26 zu entnehmen.

*Mögliche kumulative Einflüsse des Betriebs der NKKA EDU auf das FFH CZ0623819 - Fluss Rokytná*

In das Sammelgebiet des Flusses Rokytné ist die Einleitung des Regenwassers aus einem Teil des Areals der NKKA EDU geplant. Im Gebiet der Zuflüsse der Rokytná (vor allem des Heřmanický- und Lipňanský-Bachs) kommen zur Zeit keine weiteren Bauwerke vor und sind auch nicht geplant, welche in Bezug auf das FFH CZ0623819 - Fluss Rokytná ein weiteres Risiko darstellen würden.

### Abb. 26 Landkarte der Reservoirs an den Flüssen zwischen der NKKA EDU und dem FFH CZ0623819 Rokytá

<table>
<thead>
<tr>
<th>nádrž Lipňany</th>
<th>Wasserreservoir Lipňany</th>
</tr>
</thead>
<tbody>
<tr>
<td>nádrž Olešná</td>
<td>Wasserreservoir Olešná</td>
</tr>
<tr>
<td>nádrž Kordula</td>
<td>Wasserreservoir Kordula</td>
</tr>
<tr>
<td>nádrž Rešice</td>
<td>Wasserreservoir Rešice</td>
</tr>
<tr>
<td>ústí do Rokytne</td>
<td>Mündung in den Fluss Rokytne</td>
</tr>
</tbody>
</table>

#### 4.2.2. FFH CZ0614131 - Tal der Flüsse Oslava und Chvojnice

Das FFH CZ0614131 - Tal der Flüsse Oslava und Chvojnice ist verhältnismäßig ausgedehnt (2339,1052 ha) und schließt das Tal der Läufe der beiden Flüsse über ihren Zusammenfluss und ferner auch den einige Kilometer langen Abschnitt von Oslava unterhalb des Zusammenflusses ein. Am nächsten zur NKKA EDU, ungefähr in einer Entfernung von 7 km, liegen die südwestlichen Randgebiete des FFH, der abgelegene Rand ist mehr als 10 km entfernt (siehe Abb. 2).

In diesem Gebiet FFH sind der Schutzgegenstand 7 Naturstandorte (siehe Tab. 3), 3 Pflanzen- und 2 Tierarten (siehe Tab. 4).
Tab. 3  Naturstandort - Schutzgegenstände im FFH CZ0614131 - Tal der Flüsse Oslava und Chvojnice

<table>
<thead>
<tr>
<th>Standort Nummer</th>
<th>Beschreibung des Standorts/Lebensraums</th>
<th>Gesamtfläche in FFH (ha)</th>
<th>Anteil von der Fläche von FFH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3260</td>
<td>Fließgewässer der planaren bis montanen Stufe mit der Vegetation der Verbände Ranunculion fluitantis und Callitricho-Batrachion</td>
<td>40,4185</td>
<td>1,72</td>
</tr>
<tr>
<td></td>
<td>V4A Makrophyten-Vegetation der Wasserläufe - Bestände der aktuell anwesenden Wassermakrophyten</td>
<td>40,4185</td>
<td>1,72</td>
</tr>
<tr>
<td>6190</td>
<td>Pannonische Felsgräser (Stipo-Festucetalia pallentis)</td>
<td>4,462</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>T3.1 Felsvegetation mit dem Schaf-Schwingel (Festuca pal-lens)</td>
<td>4,4620</td>
<td>0,19</td>
</tr>
<tr>
<td>6210</td>
<td>Halbnatürliche Trockengräser und Facies der Gesträuche auf Kalkgrundgesteinen (Festuco-Brometalia)</td>
<td>9,9290</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>T3.3D Kontinentale Trockengräsern - Bestände ohne bedeutendes Vorkommen von Orchideen</td>
<td>9,9290</td>
<td>0,42</td>
</tr>
<tr>
<td>8220</td>
<td>Silikatfelsen mit Felspaltenvegetation</td>
<td>29,0317</td>
<td>1,24</td>
</tr>
<tr>
<td></td>
<td>S1.2 Felspaltenvegetation der Silikatfelsen und Steingerölle</td>
<td>29,0317</td>
<td>1,24</td>
</tr>
<tr>
<td>9170</td>
<td>Eichen-Hainbuchen-Wälder Galio-Carpinetum</td>
<td>526,0082</td>
<td>22,48</td>
</tr>
<tr>
<td></td>
<td>L3.1 Herkynische Eichen-Hainbuchen</td>
<td>526,0082</td>
<td>22,48</td>
</tr>
<tr>
<td>9180</td>
<td>Hang-, Schlucht- und Geröll-MischwälderTilio-Acerion</td>
<td>90,1495</td>
<td>3,85</td>
</tr>
<tr>
<td></td>
<td>L4 Geröllwälder</td>
<td>90,1495</td>
<td>3,85</td>
</tr>
<tr>
<td>9110</td>
<td>Euro-Sibirische Eichen-Steppenwälder</td>
<td>7,3343</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>L6.5A azidophile thermophile Eichenwälder mit dem Behaarten Ginster (Genista pilosa)</td>
<td>7,3343</td>
<td>0,31</td>
</tr>
</tbody>
</table>

Tab. 4  Arten - Schutzgegenstände im FFH CZ0614131 - Tal der Flüsse Oslava und Chvojnice

<table>
<thead>
<tr>
<th>Art</th>
<th>Häufigkeit (Einzelne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grünes Gabelzahnmoos (Dicranum viride)</td>
<td>nicht quantifiziert</td>
</tr>
<tr>
<td>Adria-Riemenzunge (Himantoglossum adriaticum)</td>
<td>40</td>
</tr>
<tr>
<td>Große Kuhschelle (Pulsatilla grandis)</td>
<td>500</td>
</tr>
<tr>
<td>Russischer Bär (Callimorpha quadripunctaria)</td>
<td>nicht quantifiziert</td>
</tr>
<tr>
<td>Groppe (Cottus gobio)</td>
<td>&gt;10000</td>
</tr>
</tbody>
</table>

Keiner der Schutzgegenstände in FFH CZ0614131 - Tal der Flüsse Oslava und Chvojnice ist durch die Einflüsse der Errichtung und des Betriebs der NKKA EDU bedroht. Wie aus den Modellen der Beschattung der Umgebung der NKKA durch den Dampfschleier (siehe Kap. 4.1.3) resultiert, treten keine mikro- und mesoklimatischen Einflüsse der NKKA EDU auf dieses Gebiet auf (Sokol et Řezáčová 2015, Obst 2015).
4.2.3. FFH CZ0614133 – Kozének

Das kleine Gebiet des FFH CZ0614133 – Kozének (19,9169 ha), das ca. 7,6 km nordöstlich der NKKA EDU liegt (siehe Abb. 2), hat als Schutzgegenstände 2 Biotope (siehe Tab. 5) und eine Pflanzenart, welche die Große Kuhschelle (*Pulsatilla grandis*) mit einer Population von 680 Einzelexemplaren ist.

Tab. 5 Naturstandort - Schutzgegenstände im FFH CZ0614133 – Kozének

<table>
<thead>
<tr>
<th>Standort Nummer</th>
<th>Beschreibung des Standorts/Lebensraums</th>
<th>Gesamtfläche (ha) in FFH</th>
<th>Anteil der FFH-Fläche in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6210</td>
<td>Halbnatürliche Trockengräser und Facies der Gestrüchte auf Kalkgrundgesteinen (Festuco-Brometalia)</td>
<td>11,7262</td>
<td>58,87</td>
</tr>
<tr>
<td></td>
<td>T3.5B Azidophile Trockengräser ohne bedeutendes Vorkommen von Orchideen</td>
<td>11,7262</td>
<td>58,87</td>
</tr>
<tr>
<td>6510</td>
<td>Extensive Mähwiesen der planaren bis submontanen Stufe (Arrhenatherion, Brachypodio-Centaureion nemoralis)</td>
<td>3,4296</td>
<td>17,21</td>
</tr>
<tr>
<td></td>
<td>T1.1 Mesophile Glatthaferwiesen</td>
<td>3,4296</td>
<td>17,21</td>
</tr>
</tbody>
</table>

Der Charakter aller angeführten Schutzgegenstände und die Entfernung des zu bewertenden Vorhabens schließen einen bedeutenden negativen Einfluss auf diesen Standort aus. Dieses Gebiet des FFH befindet sich einem Gebiet, für das die Auswirkung der möglichen Beschattung des Dampfschleiers aus den Kühltürmen der NKKA EDU modelliert wurde (siehe Abb. 21). Die potentielle Beschattung ist hier an der Grenze der Messbarkeit und die Reduzierung des Sonnenlichts erreicht hier Werte von Hundertsteln bis Zehnteln Prozent gegenüber dem jetzigen Zustand.

4.2.4. FFH CZ0622150 – Biskoupský-Hügel

Das FFH CZ0622150 – Biskoupský-Hügel liegt ca. 9,2 km nordöstlich der NKKA EDU entfernt (siehe Abb. 2) und hat eine Fläche von 8,2111 ha, wobei der einzige Schutzgegenstand hier die Große Kuhschelle (*Pulsatilla grandis*) mit einer Population von 300 bis 400 Einzelexemplaren ist.

Dieses Gebiet liegt in der Nähe von FFH CZ0614133 – Kozének und daran reicht also auch das Modell der Beschattung des Dampfschleiers aus den Kühltürmen NKKA EDU (Abb. 21), das die potentielle Beschattung an der Grenze der Messbarkeit und die Reduzierung der Besonnung in den Werten von Hundertsteln bis Zehnteln Prozent gegenüber dem jetzigen Zustand zeigt. In der Beziehung zum Schutzgegenstand kann man den negativen Einfluss ausschließen.

4.2.5. FFH CZ0622161 – Ve Žlebě

Das FFH CZ0622161 – Ve Žlebě (2,5454 ha) liegt ca. 7,5 km südöstlich der NKKA EDU entfernt (siehe Abb. 2) und der einzige Schutzgegenstand ist hier die Große Kuhschelle (*Pulsatilla grandis*) mit einer auf 1200 - 1400 Einzelexemplare geschätzten Population. Im Hinblick auf die Position gegenüber der NKKA EDU sind die Auswirkung des Schattens des Dampfschleiers und somit auch der negative Einfluss auf die Schutzgegenstände ausgeschlossen.
4.2.6. **FFH CZ0622179 – Široký**

Das FFH CZ0622179 – Široký (0,5657 ha) liegt ca. 8 km südöstlich der NKKA EDU entfernt (siehe Abb. 2). Der einzige Schutzgegenstand ist hier die Große Kuhschelle (*Pulsatilla grandis*) mit einer auf 500 Einzelexemplare geschätzten Population. Im Hinblick auf die Position gegenüber der NKKA EDU sind die Auswirkungen des Schattens des Dampfschleiers und somit auch der negative Einfluss auf die Schutzgegenstände ausgeschlossen.

4.2.7. **FFH CZ0623707 – Altes Schloss Jevišovice**

Das FFH CZ0623707 – Altes Schloss Jevišovice liegt in größerer Entfernung als die vorherigen Gebiete von gemeinschaftlicher Bedeutung, und zwar ca. 15 km südwestlich (siehe Abb. 2). Im Unterschied zu den sonstigen FFH ist hier der Schutzgegenstand die Sommerkolonie einer sehr beweglichen Fledermausart - des Großen Mausohrs (*Myotis myotis)*.

Der Umfang der Kolonie schwankt zwischen 450 bis 1100 Einzelexemplaren. Im Hinblick darauf, dass in einigen Bauobjekten des jetzigen Areal des EDU ab und zu verschiedene Arten der Fledermäuse gefunden werden, lässt sich nicht ausschließen, dass die in das Gebiet von Dukovany fliegenden Fledermäuse auch von diesem Standort stammen. Der Betrieb des jetzigen Kernkraftwerks EDU und auch der NKKA EDU ist keine direkte Bedrohung für diese Lebewesen, und deshalb kann man den Einfluss des Vorhabens und des Betriebs der NKKA EDU auf die Schutzgegenstände und auch auf das gesamte Gebiet des FFH ausschließen.

4.2.8. **VSG CZ0621032 – Thaya-Gebiet**

Das dem Standort der NKKA EDU nächstliegende Vogelschutzgebiet ist das VSG CZ0621032 – Thaya-Gebiet mit einer Fläche von 8042,5882 ha. Die Übersicht der Schutzgegenstände in diesem Vogelschutzgebiet ist in Tab. 6 angegeben.

<table>
<thead>
<tr>
<th>Art</th>
<th>Stand der Population/Anzahl</th>
<th>Durchziehend/Anzahl</th>
<th>Überwinternd/Anzahl</th>
<th>Nistend/Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohrdommel (<em>Botaurus stellaris</em>)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3-5 Paare</td>
</tr>
<tr>
<td>Schnatterente (<em>Anas strepera</em>)</td>
<td>-</td>
<td>450-550 Einzel-exemplare</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eisvogel (<em>Alcedo atthis</em>)</td>
<td>15-25 Paare</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rohrweihe (<em>Circus aeruginosus</em>)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25-35 Paare</td>
</tr>
</tbody>
</table>

Die Entfernung des nächsten Vogelschutzgebiets VSG CZ0621032 – Thaya-Gebiet, ist ca. 35 km Luftlinie (siehe Abb. 4), was genügt, dass die Errichtung und der Betrieb der NKKA EDU die Schutzgegenstände dieses Vogelschutzgebiets nicht beeinflussen.
5. **Schlussbewertung**


Die Einflüsse der Änderungen des Mikroklimas, einschließlich der Einflüsse der potentiellen Beschattung der wärmeliebenden Gemeinschaften und der kumulativen Einflüsse auf das FFH CZ0614134 - Tal des Flusses Jihlava wurden mit Hilfe des Modellierens dieser Er scheinungen ausgeschlossen.

Einflüsse auf die Biotope der Wasser pflanzen im Fluss Jihlava, die der Schutzgegenstand des FFH CZ0614134 - Tal des Flusses Jihlava sind, sind nicht vorauszusehen. Der markanteste Faktor, der den Zustand dieser Biotope beeinflusst, ist die Anwesenheit des WR Mohelno (und des ganzen Systems WW Mohelno – Dalešice). Ihr Management beeinflusst den Wasserdurchfluss und die Wassertemperatur so bedeutend, dass vor ihrem Hintergrund die Einflüsse des EDU und der NKKA EDU bedeutungslos und unmessbar sind.

Der Einfluss auf sonstige Gebiete des Netzwerks Natura 2000 in der Umgebung ist im Hinblick auf ihre Entfernung vom Vorhaben der Errichtung und Betriebs der NKKA EDU nicht signifikant.

Die Errichtung und der Betrieb des zu bewertenden Vorhabens beeinflussen also keinen Schutzgegenstand und sie rufen nicht einmal eine Beeinträchtigung der Integrität eines jedweden Gebiets des Netzwerks Natura 2000 hervor (siehe Tab. 7).

---

**Tab. 7 Feststellung der Umfänge der Einflüsse auf die Schutzgegenstände der Standorte des Netzwerks Natura 2000**

<table>
<thead>
<tr>
<th>EVL/FFH oder PO/VSG</th>
<th>Präzisierung</th>
<th>Möglicher Einfluss</th>
<th>Einfluss</th>
<th>Vermindernde Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH CZ0614134 - Tal des Flusses Jihlava</td>
<td>Fluss Jihlava</td>
<td>Temperaturänderung</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>- ““ -</td>
<td>- Fluss Jihlava</td>
<td>Regenwasserzufluss</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>-““ -</td>
<td>Wassergemeinschaft im Grenzgebiet</td>
<td>Nichteinhaltung der Grenzen Staubanfall</td>
<td>-1</td>
<td>Öko-Aufsicht Beregnung des Bauwerks</td>
</tr>
<tr>
<td>-““ -</td>
<td>Wärmeliebende Gemeinschaften</td>
<td>Beschattung, Mikroklima</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>EVL/FFH oder PO/VSG</td>
<td>Präzisierung</td>
<td>Möglicher Einfluss</td>
<td>Einfluss</td>
<td>Vermindernde Maßnahmen</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>- “ -</td>
<td>Alle Schutzgegenstände</td>
<td>Verkehr bei der Errichtung auf der Straße II/392</td>
<td>-1</td>
<td>Aufrechterhaltung der voraussichtlichen Verkehrsintensität</td>
</tr>
<tr>
<td>FFH CZ0623819 – Fluss Rokytná</td>
<td>Alle Schutzgegenstände</td>
<td>Regenwasserzufluss</td>
<td>-1</td>
<td>Auffangen der Fest- und Erdölstoffe, Monitoring am Wasserabfluss</td>
</tr>
<tr>
<td>FFH CZ0614131 - Tal der Flüsse Oslava und Chvojnice</td>
<td>Alle Schutzgegenstände</td>
<td>Beschattung, Mikroklima</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>FFH CZ0614133 – Koženek</td>
<td>Alle Schutzgegenstände</td>
<td>Beschattung, Mikroklima</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>FFH CZ0622150 – Biskoupský-Hügel</td>
<td>Alle Schutzgegenstände</td>
<td>Beschattung, Mikroklima</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>FFH CZ0622161 – Ve Žlebě</td>
<td>Alle Schutzgegenstände</td>
<td>Beschattung, Mikroklima</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>FFH CZ0622179 – Široký</td>
<td>Alle Schutzgegenstände</td>
<td>Beschattung, Mikroklima</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>FFH CZ0623707 – Altes Schloss Jevišovice</td>
<td>Alle Schutzgegenstände</td>
<td>Fledermausmigration</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>VSG CZ0621032 – Thaya-Gebiet</td>
<td>Alle Schutzgegenstände</td>
<td>Vogelmigration</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
6. **VERMINDERNDE MASSNAHMEN**

Bei der Analyse des Umfangs der Errichtung und des Betriebs der NKKA EDU, des Charakters und des Zustandes der Schutzgegenstände in den Gebieten des Netzwerks Natura 2000 wurden keine bedeutend negativen Einflüsse gefunden, welche die Integrität dieser Gebiete stören würden. Unter bestimmten Umständen können die Errichtung und der Betrieb der NKKA EDU mild negative Einflüsse auf einige Gebiet des Netzwerks Natura 2000 (Tab. 7) haben, deren Umfang oben beschrieben wurde. Zur Verminderung dieser Einflüsse werden die folgenden Maßnahmen eingehalten:

- Im Hinblick auf die Anwesenheit der empfindlichen Biotope - der Schutzgegenstände im FFH CZ0614134 - Tal des Flusses Jihlava im Grenzgebiet mit der Entwicklungsfläche D (rechtes Ufer des Skryjský-Bachs vor seiner Mündung in das WR Mohelno) wird die biologische Aufsicht bei den Bauarbeiten auf dieser Entwicklungsfläche ausgeübt, welche gewährleistet, dass die abgesteckte Grenze der Entwicklungsfläche nicht überschritten wird.

- Im Falle, dass eine Verunreinigung durch den Staub bei den Bauarbeiten drohen sollte, gewährleistet jene Person, welche die biologische Aufsicht durchführt, die Realisierung der Maßnahmen, welche den Staubanfall und die potentielle Verunreinigung der Flächen innerhalb des FFH CZ0614134 - Tal des Flusses Jihlava (z.B. Beregnung der Baustelle und der Anliegerstraßen mit Wasser an trockenen Tagen) verhindern.

- Der Abfluss am Fluss Jihlava vom WR Mohelno wird nach der Inbetriebnahme der NKKA EDU in ähnlichen Regime wie beim Betrieb des bestehenden Kernkraftwerks EDU aufrechterhalten, was den Schutz der Biotope im Fluss Jihlava im Rahmen des FFH CZ0614134 - Tal des Flusses Jihlava sicherstellt.


- Der Anstieg des Verkehrs quer durch das Gebiet FFH CZ0614134 - Tal des Flusses Jihlava auf der Straße II/392, der in der Streuungsstudie vorausgesetzt wird (Bartoš 2014), stellt keinen bedeutenden Einfluss für die Schutzgegenstände dar. Es ist nötig, diese vorausgesetzte Anzahl der Fahrzeuge aufrecht zu erhalten und im Falle des erhöhten Verkehrs, vor allem der schweren Fahrzeuge, ihre Durchfahrt zu beschränken (zum Beispiel durch ein Verkehrszeichen, das die Tonnage der Fahrzeuge beschränkt).

- Das Regenwasser, das vom Areal der NKKA EDU abgeleitet wird, wird im Hinblick auf dessen Verunreinigung, einschließlich der Messung des Strahlungsniveaus dieses Wassers überwacht, damit es die Schutzgegenstände in FFH CZ0623819 - Fluss Rokytá nicht beeinflusst. Diese Überwachung wird im Hinblick auf die Auslässe im FFH CZ0614134 - Tal des Flusses Jihlava bereits überwacht.

- Es ist nicht nötig, korrigierende Maßnahmen bzgl. der Kumulation der Einflüsse der vorausgesetzten Klimaänderungen und des Einflusses der Errichtung und des Betriebs der NKKA EDU durchzuführen. Die Ergebnisse der Modelle wiesen nach, dass der Betrieb der
NKKA EDU die potentiellen Einflüsse der Klimaänderung auf dem Gebiet von FFH CZ0614134 - Tal des Flusses Jihlava im Gegenteil vermindert.
7. **Literatur**


**Kostkan, V., Laciná, J.,** (eds.), 2014c: Biologische Untersuchungen und Bewertungen für den Bau/das Vorhaben: Neue Kernkraftanlage am Standort EDU Teilleistung 7E. Er-


LANDKARTENPORTAL DER AGENTUR FÜR NATUR- UND LANDSCHAFTSSCHUTZ DER TSCHESCHISCHEN REPUBLIK. [online]. 2014 [cit. 05.08.2014]. Erreichbar auf: http://mapy.nature.cz


OBST, P., 2015: NKKA 2 × 1 200 MW am Standort Dukovany. Beschattung des FFH Tal des Flusses Jihlava und der zusammenhängenden kleinflächigen ZCHÚ. Nicht veröffentlicht. 18 pp


Funddatenbank von AOPK ČR (NDOP AOPK ČR) www.portal.nature.cz,
Landkartenquellen der AOPK ČR http://mapy.nature.cz/,
Biomonitoring CZ http://www.biomonitoring.cz/,
Zentralverzeichnis des Naturschutzes (ÚSOP) http://drusop.nature.cz/.

Rechtsvorschriften

Richtlinie 92/43/EWG, zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen

Richtlinie des Rates 2009/147/EG über den Schutz der wildlebenden Vogelarten

Gesetz Nr. 100/2001 GBl., über die Beurteilung der Umwelteinflüsse, in der gültigen Fassung

Gesetz Nr. 114/1992 GBl., über den Natur- und Landschaftsschutz, in der gültigen Fassung
ANLAGE NR. 1

Kopie der Autorisierung zur Durchführung der Beurteilungen gemäß der Best. § 45i des Gesetzes Nr. 114/1992 GBl.

ODESÍLATEL:
Odbor druhové ochrany a implementace mezinárodních závazků
Vršovická 65
100 10 Praha 10

ADRESÁT:
Vážený pan
RNDr. Vlastimil Kostkan, Ph.D.
Náměstí Osvobození 36/43
793 35 Horka nad Moravou

V Praze dne 28. listopadu 2012
Č. j.: 90431/ENV/12
3238/630/12

ROZHODNUTÍ

Ministerstvo životního prostředí (dále jen "ministerstvo") jako příslušný správní orgán podle § 45 odst. 3 zákona č. 114/1992 Sb., o ochraně přírody a krajiny, ve znění pozdějších předpisů (dále jen "zakon"), po provedeném správním řízení vyhovuje žádosti č. j. 90431/ENV/12-3238/630/12, kterou podal dne 22. 10. 2012

RNDr. Vlastimil Kostkan, Ph.D.
narozen dne 12. 1. 1962 v Kolíně,
bytem Náměstí Osvobození 36/43, 783 35 Horka nad Moravou

prodlužuje autorizaci
k provádění posouzení podle § 45i zákona.

Autorizace se v souladu s § 45i odst. 3 zákona prodlužuje o dalších 5 let, a to ode dne 7. 3. 2013, jakožto dne vykonatelnosti tohoto rozhodnutí.

Autorizace je nepřenosná na jinou osobu.

Autorizaci je možno opakovaně prodlužit o dalších 5 let za podmínek stanovených vyhláškou č. 488/2004 Sb., o autorizovaných osobách podle zákona o ochraně přírody a krajiny (dále jen "vyhláška").

Odůvodnění:
Žadatel je držitelem autorizace k provádění posouzení podle § 45i zákona na základě rozhodnutí o udělení autorizace č. j. 7854/ENV/07-307/630/07 ze dne 6. 3. 2008, která mu byla udělena v souladu s § 45i odst. 3 zákona na dobu 5 let.
Ministerstvo životního prostředí
České republiky

Dne 22. 10. 2012 byla ministerstvu doručena žádost č. j. 90431/ENV/12-3238/630/12 o prodloužení uvedené autorizace. V souladu s ustanoveními § 45i odst. 3 zákona a § 5 vyhlášky ministerstvo ověřilo, zda žadatel splňuje podmínky pro udělení autorizace stanovené zákonem, a jelikož v období od předchozího udělení autorizace došlo ke změně skutečností rozhodných pro posouzení odborné způsobilosti autorizované osoby (od roku 2008, kdy byla autorizace udělena, došlo ke změnám a vydání nových právních předpisů a k vydání několika metodických dokumentů souvisejících s činností autorizované osoby), nařídilo přezkoušení odborné způsobilosti žadatele. Přezkoušení se uskutečnilo dne 28. 11. 2012 s výsledkem "vyhověl", jak je uvedeno v záznamu z přezkoušení, který je součástí podkladového spisu pro vydání tohoto rozhodnutí.

Vzhledem k tomu, že z přezkoušení nevypluly skutečnosti bránící prodloužení autorizace, předložená žádost obsahuje všechny náležitosti a jsou tak splněny všechny podmínky pro prodloužení autorizace k provádění posouzení podle § 45i zákona, rozhodlo ministerstvo tak, jak je uvedeno ve výroku tohoto rozhodnutí.

Poučení o opravném prostředku:
Proti tomuto rozhodnutí lze podat rozklad ministrové životního prostředí podáním na Ministerstvo životního prostředí, Vršovická 65, 100 10 Praha 10, a to ve lhůtě 15 dnů ode dne doručení tohoto rozhodnutí.

Potvrzuji, že se vzdávám možnosti podání rozkladu proti tomuto rozhodnutí.

Podpis:

Ministerstvo životního prostředí, Vršovická 65, 100 10 Praha 10, (+420) 26712-1111, www.mzp.cz, info@mpz.cz

Conbios s. r. o., Conservation Biology Service

61