

The Evolution of practical and cost effective radon solutions for new and existing UK buildings

Chris Scivyer Dresden, December 2013

Part of the BRE Trust

Introduction to radon and buildings

In the UK

Our solutions target radon in air

Radon in water and radon emanation from building materials are rarely a problem in the UK

UK Average indoor radon level 20 Bqm³ Estimated 100,000 homes over 200 Bqm³ Highest average in a house 20,000 Bqm³

5

Reducing radon in existing buildings

Solutions are installed :- Radon Specialists 1/3rd, Local Builders 1/3rd, Homeowners 1/3rd.

Natural underfloor ventilation

- Clear out existing vents
- Remove obstructions such as plant growth
- Pull back soil in beds, remove paving or macadam laid obstructing vents.
- Replace existing vents or provide extra vents

Mechanical underfloor ventilation

Sump/subslab depressurisation

- How it works
 - reverses stack effect of the building
 - draws radon away from the building
- What can be achieved
 - gives greatest reductions
 - must run continuously

12

First Floor

Ground Floor

Basement

External mini-sump system

Externally excavated mini – sump system with low level exhaust

Passive stack sump system

- relies upon stack effect and action of wind over the building
- ideal as first step with lower radon levels 300-500 Bq/m³
- depressurisation can be encouraged by design of cowl
- pipework should be kept straight
- In theory should work best where pipework is located internally
- consider need for fan later

Positive Pressurisation or Ventilation

- What is positive pressurisation?
 - loft mounted fan system
 - originally developed for condensation reduction
- How does it work?
 - Combination of positive pressure and dilution
- When to use it
 - radon levels up to about 600
 Bq/m³
 - relatively airtight houses
 - possible condensation problems

Positive ventilation systems

Diffusers

bre Raising awareness campaigns

- Government funded
- Target local areas
- Local Authority lead -
 - supported by Public Health England (PHE), BRE, and regional health authorities
- Awareness training for
 - Councillors
 - Local authority staff
 - Local Medical professionals
 - Surveyors, Estate Agents
 - Builders and builders merchants
- Awareness events for the public
 - Practical face to face advice on risks and solutions

Protecting New Buildings

Newbuild Research 1988 - 1991

- a workshop for builders, designers, local building officers, and legislators to develop practical solutions for new build protection
- Interim voluntary guidance launched 1988
- Large field trial targeted :
 - High risk areas areas where 30% or more existing unprotected houses expected to have radon levels exceeding 200 Bq/m³
 - Medium risk areas areas where between 10% and 30% of existing unprotected houses expected to have radon levels exceeding 200 Bq/m³.
 - 416 dwellings:
 - 121 in high risk areas
 - 295 in medium risk areas

- Houses were selected on sites with both unprotected and protected houses – which gives 'before' and 'after' results
- A mix of construction types were included in the study:
 - In-situ/slab on grade concrete floors
 - Beam and block prefabricated concrete floors
- 33 building sites across Cornwall and Devon
- BRE carried out site inspection across each site

Field Trials 1989-1991

Newbuild Homes Tested			
	Unprotected	Protected	
In-situ concrete	194	87	
Beam and Block	103	47	

Annual average indoor radon levels		
	Unprotected	Protected
In-situ concrete	130 Bq/m3	96 Bq/m3
Beam and Block	54 Bq/m3	20 Bq/m3

Long term protection

- The average radon level for the 134 protected homes in the 1990 study was 56.8 Bq/m³
- We retested a sample of 70 homes in 2000 and found the radon results to average 58 Bq/m³ very similar to the earlier results
- In 2010 we retested a sample of 35 homes again and found the average to be 62.6 Bq/m³.

The results do not appear to have been significantly affected by adding extensions or conservatories, or from improvements such as adding double glazing, or wall/roof insulation.

Radon Protective Measures For New Dwellings

- Requirement C2 of Schedule 1 of the Building Regulations 2013 for England and Wales states that:
 - 'precautions shall be taken to avoid danger to health and safety caused by substances in found on or in the ground covered by the building
 - It refers to : Building Research Establishment Report BR211 ' Radon : guidance on protective measures for new buildings'

Maps

Map 9 Oxfordshire, Northamptonshire and Warwickshire, 100-km grid square SP (axis numbers are the coordinates of the National Grid)

© Crown copyright. All rights reserved [Health Protection Agency][100016969][2007] Radon potential classification © Health Protection Agency and British Geological Survey copyright [2007]

Protective Measures Requirements

- Areas of low risk **No protection needed**
- Areas of medium risk Basic protection needed
 - radon barrier
- Areas of high risk Full protection needed
 - radon barrier and provision for underfloor ventilation or sub-slab depressurisation
- Or, use Geological data to assess indoor radon risk and permit relaxation of requirements

Full Radon Protection

- Barrier required across whole floor area
 - minimum 1200 gauge/300 micrometre polyethylene sheet barrier
 - barrier joints sealed
 - cavities sealed
 - service entries sealed
- in-situ concrete ground floor slabs should be edge supported
- need to provide sump or ventilated void

Full radon protection in a suspended concrete floor

Possible working detail of full radon protection in a suspended concrete floor

Full radon protection in in-situ or ground-supported concrete floor (barrier under slab)

Full Radon Protection : Suspended timber

Full Radon Protection : Suspended timber

bre Barrier materials

- Using thicker/stronger materials
- Recycled barrier materials
- Encourage the use of prefabricated components
- Greater emphasis on sealing of joints
- Weather conditions
- Protection of the barrier
- Testing barriers

Further guidance

brebookshop.com

New Good Repair Guides

GRG 37 : Radon Solutions in Homes:

Part 1. Suspended timber floors Part 2. Positive house ventilation Part 3. Radon sump systems

In development :

Radon Solutions in Homes: additional guidance for older buildings

Guidance for workplace Buildings

bretrust FB 41

Guidance for new buildings

0

BRE Report BR211(2007) Good Building Guides 73 and 74(2008) and 75 (2009)

www.bre.co.uk/elearning www.bre.co.uk/training

BRE E-Learning

On-line radon awareness course launched in the summer 2012

And Finally.....

If all else fails

Remember...

- Most houses only require a single radon solution
- If there is an underfloor space ensure that it is kept clear and well ventilated.
- Fan powered systems must run continuously or they will crash!

