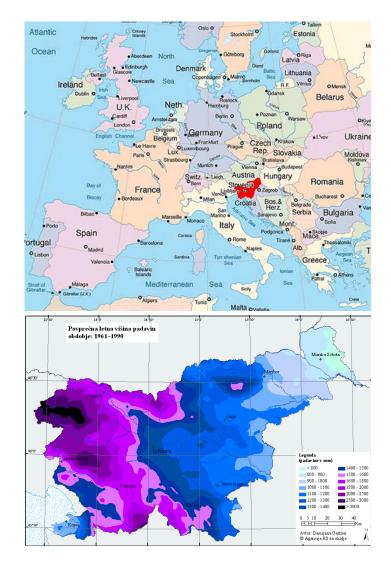


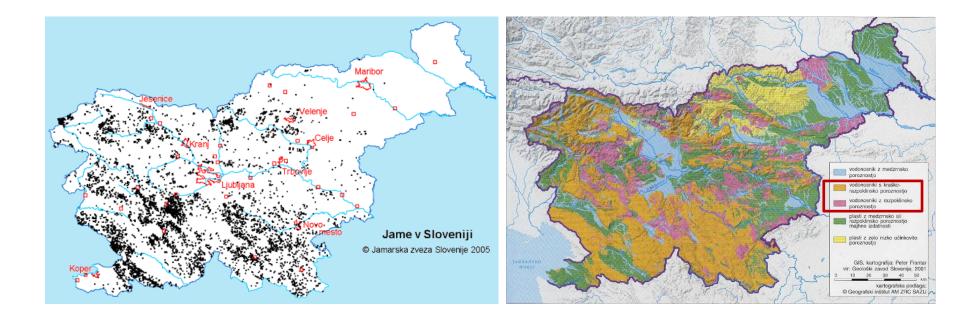
ZAVOD ZA GRADBENIŠTVO SLOVENIJE

SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING INSTITUTE


# Radon mitigation in Slovenia

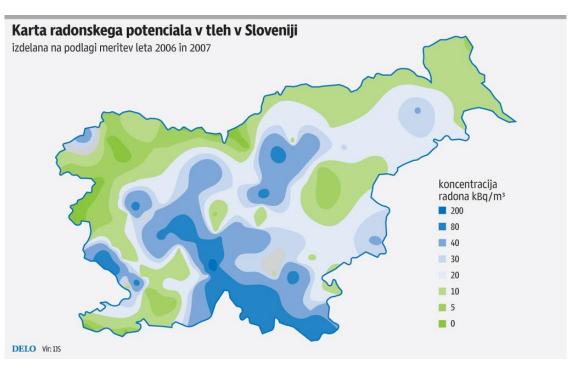
Friderik Knez Department for Building Physics friderik.knez@zag.si

Dresden, 2. - 3. December 2013 Radon protection conference


# Slovenia – General data

- Central European country
- 2 million inhabitants
- 3 climatic regions
  - Snow in winter
  - Medium rain
- Neighbouring
  - Croatia
  - Italy
  - Austria
  - Hungary




#### **Slovenia and karst terrain**

- Left: known caves
- Right: terrain type, regarding permeability



### **Meaurements of radon in Slovenia**

- Systematic research for some 20 years
- Shown: ground radon potential
- Detailed surveys of indoor radon in schools and kindergartens




# Buildings

- Building stock
  - Approx. 600.000 buildings, 500.000 single houses
  - Age varies
  - Building type typical for Central Europe
- Influencing building parameters:
  - increase of tightness,
  - increase of indoor temperature

# **Typical building stock**

- Before 1945 CE
- 1945-1970 brick, poor practice
- 1970-1980 gradual improvement
- Rdon risk is found particularly in class 1 and 2 SHF

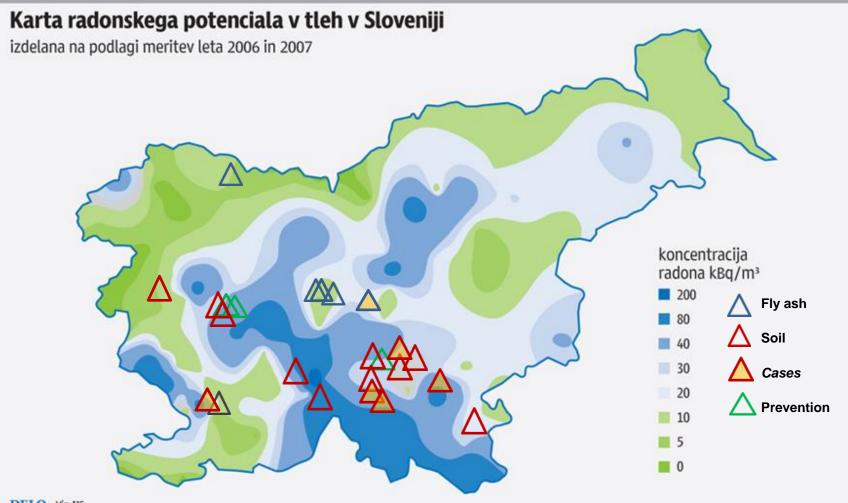


Friderik Knez | Radon protection conference , 2. -3. september 2013

# Mitigation

- Serious mitigation for 20 years
- Sources
  - Karst terrain
  - High U content in soil
  - Fly ash
- Based on EPA guidelines
- Readon prevention new build: (only) 3 cases

www.zag.si 7 Friderinkenkinezer Radon protection conference . 2. soutsepterabler 2013


# **Current changes in buildings**

- Energy efficiency measures cause
  - Tighter envelopes
  - Controlled ventilation / over- or underpressure
- Genaral situation
  - Lower awareness of risks generally (radon, earthquake, flood) or
  - Denial of rosk
  - Mobility and real estate prices push buildings on riskier areas (e.g. South of Ljubljana)

#### Cases



#### **Radon source per case**



DELO Vir: IJS

# **Cases – general workflow applied**

- Blueprints analyses
- Studying *Rn* measurements
- Interview employees and locals
- Measurements and assessment
- Design a strategy
- Apply a pilot system
- Evaluate effect
- Correct if neccesary
- Finalize the system

# Listening to the employees

- Different sources (older users, maintenance personell, historic sources)
  - Ussually more reliable than old blueprints!
- Local information
  - Materials
  - Debree use
  - Geological data



# Knowing what you are dealing with

- Ussually needed
  intervention
  - Opening the structure
  - Water barrier?
- Often found critical: knowledge – details on shafts
  - Unexpected difficulties (e.g. Sealed access)
- Important: detailed inspection to minimize intrusion





#### **Details**



Friderik Knez | Radon protection conference , 2. -3. september 2013

# **Evaluating planned strategy**

#### • Permeability measurements

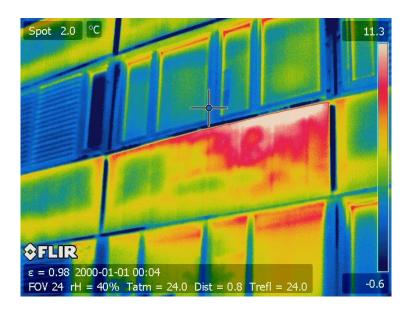








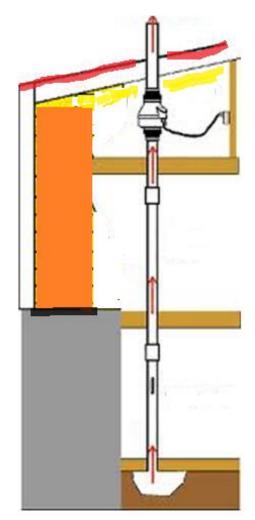
#### **Difficulties**


- Sometimes no pressure communication is found
  - Very tight or very loose structure



Friderik Knez | Radon protection conference , 2. -3. september 2013

# **Evaluation of building tightness**


- Crucial in air pressurization systems
- May predict effects of energy refurbishment





# **Different strategies considered**

- Local underpressure
  - SSD ("sub-slab depresurisation") often used in Slovenia
  - SMD ("sub-membrane depresurisation") very seldom used in Slovenia, results not so good
  - DTD ("drain tile" depressurisation) never used in Slovenia as is originally designed
  - Drain / shaft system used if posible, results are good
- Overpressurization
  - Considered in latest case (not presented)

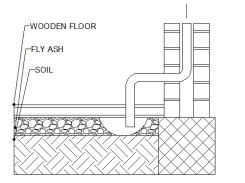


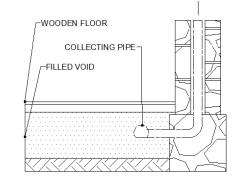
# Systems execution – different variations

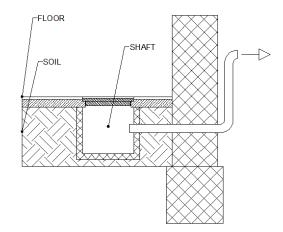


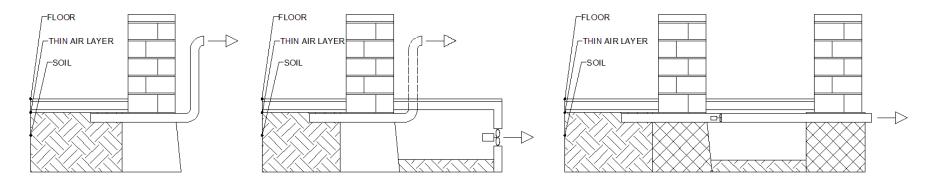








Friderik Knez | Radon protection conference , 2. -3. september 2013


# **Critical in execution (found)**


- Fan selection
- Controll absence
- Change of piping material
- Caulking material

# Mitigation principle used in selected cases



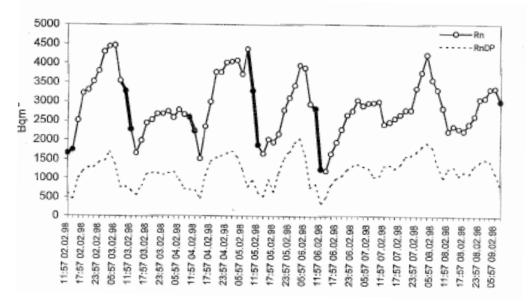






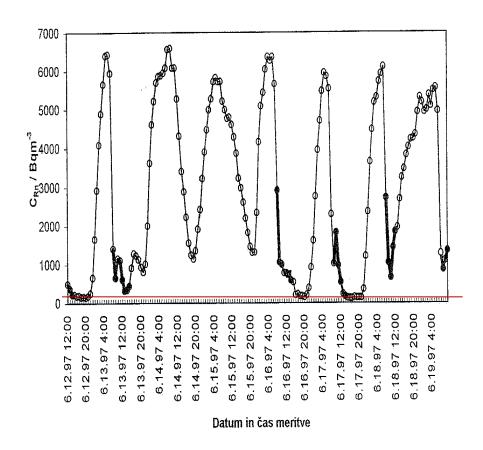
# **Results of mitigation**

| # | Building            | Basic building<br>description                                                               | Radon source                            | C <sub>Rn,initial</sub><br>[Bq/m <sup>3</sup> ] | C <sub>Rn,inter</sub><br>[Bq/m³] | C <sub>Rn,mit</sub><br>[Bq/m³] | Mitig.<br>[year] | Mitig. principle                         |
|---|---------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|----------------------------------|--------------------------------|------------------|------------------------------------------|
| 1 | Janče               | Wooden floor, fly-ash in the structure.                                                     | Fly ash in the floor structure          | Over 1.000                                      | less than<br>400                 | -                              | 1997             | SSD                                      |
| 2 | Lokev pri<br>Sežani | Wooden floor, beneath<br>large void (estimated 1,5<br>m <sup>3</sup> /m <sup>2</sup> floor) | Soil                                    | > 1.000                                         | 200-850                          | -                              | 1997             | New floor, SSD                           |
| 3 | Dolenja vas         | Concrete floor, long shaft network (piping, sewage)                                         | Soil, radon<br>distributed by<br>shafts | 600-4.150                                       | 100-3.165                        | < 100 - 500                    | 1997             | Ventilation of<br>shafts + SSD<br>(part) |
| 4 | Prevole             | Concrete, inaccessible walls                                                                | Soil                                    | 3.200                                           | Not yet<br>avail.                | -                              | 2012             | SSD                                      |
| 5 | Muljava             | Concrete floor on ground,<br>under floor suspected<br>mixed debris                          | Soil                                    | 4.000                                           | 380                              | -                              | 2011             | SSD                                      |
| 6 | Vavta vas           | Concrete (?), stone walls,<br>under floor suspected<br>debris                               | soil                                    | 1.750                                           | 340                              | 169                            | 2013             | SSD, sealing                             |


www.zag.si

Friderik Knez | Radon protection conference , 2. -3. september 2013

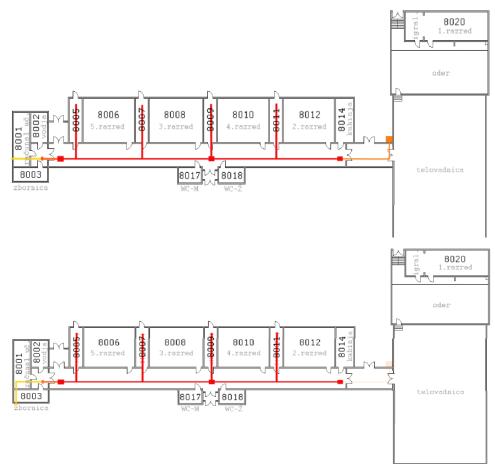
#### Janče


- Radon source is fly ash in void
- Minigation: removal of fly-ash and ventilation
- Concentration reduction
  - Before:1020 Bq/m<sup>3</sup>
  - After: < 400 Bq/m<sup>3</sup>





# Lokev pri Sežani


- Large void in structure
- Floor reconstructed
  - Drainage system introduced
- Ventilation in chimney
- First operation successful, but fan failure due to poor fan selection
- Secon operation very successful (C<sub>Rn</sub> < 200 Bq/m<sup>3</sup>)

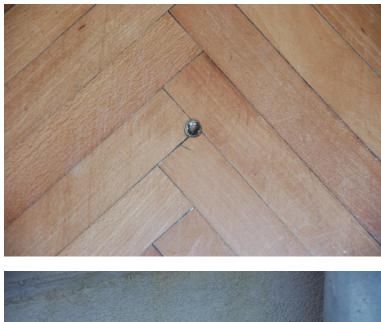


# Case Dolenja Vas (1997)

- Initial: 600 4000 Bqm<sup>-3</sup>
- Final: 100 500 Bqm<sup>-3</sup>
- First mitigation: shaft ventilation
- Second mitigation: extension
- Third mitigation:new exhaust






#### Dolenja vas





www.zag.si 26 Friderinkerkinkezer Radon protection conference ... 2. sortsepterabler 2013

#### **Case Dolenja vas (revisited)**









www.zag.si 27 Friderinkenkinker Radom protection conference ... 2. soptember 2013

#### **Dolenja vas - revisited**

- Mitigation successful when commissioned
- Some modifications done afterwards (facade air feed-in due to lack of understanding)
- New floor in library
  - Problems with sealed floor (seen very soon)
- Effect of modifications on mitigation system not known
- Change of personell dilutes instructions passed at set-up

# Divača ("impossible case")

- Railway controll room
- Radon entering via large floor opening
- Opening connected to underground signalization system
  - No modification allowed due to safety reasons
  - Underground "collector" about 5 km long no ventilation or overpressure is possible
- Solution:
  - Instant: increased natural ventilation
  - Discussed (but not realized): mechanical ventilation with overpressure scheme

#### Divača











Friderik Knez | Radon protection conference , 2. -3. september 2013

# Ribnica ("impossible case 2")

- School exhibits high concentrations
- Analyzing blueprints following is found
  - The building lies on 140 cm thick concrete
  - Reason: pit beneath, leading into minor karst cave
- Exploring the possibilities it becomes clear:
  - No SSD possible due to very high volume to be vetilated
  - No overpressure possible due to central position of rooms in question
  - Sealing virtually impossible in technical rooms due to installations
- Solution:
  - Limited access and use of rooms
  - Exploring possibilities for ventilation via shafts

# Ribnica



#### Case Muljava (2010-2011)











Friderik Knez | Radon protection conference , 2. -3. september 2013

#### **Case Muljava**



Friderik Knez | Radon protection conference , 2. -3. september 2013

# Muljava – sum up

- Concentration
  - Before 4000 Bqm<sup>-3</sup>
  - After 380 Bqm<sup>-3</sup>
- The system in crucial points as designed
- Alterations in material selection
  - Increased drag
  - Possible issues on durability / condensation
- No monitoring has been installed to monitor pressure
  - Risk of unnoticed failure
- Results of contol measurements OK

## Prevole (2011-2012)



#### **Prevole - analyses**



#### Prevole



#### Prevole – sum up

- Mitigation strategy was prepared
- Due to small space problems with execution were expected
- The owner modifeid mitigation strategy
  - Without notice or consultation
  - Reason claimed: mainly difficul accessibility
- Real problems:
  - Lack of understanding the princliples of thy system
  - Unskilled technical personell in the building
  - Distributed tasks
  - Organization of school system

#### **Prevole - expectations**

- Measurements not yet done
- Expected insufficient effect in spite of obvious effect of the ventilator
  - We have assessed that the vent is simply moving outside air
- Inspectorate is alerted about the intervention

#### Case Vavta vas (2012-2013)







#### **Case Vavta vas**





www.zag.si 42 Friderinkerkinker Radon protection conference ... 2. sont september 2013

#### Vavta vas – sum up

- Concentration dropped
  - Before: 1750 Bqm<sup>-3</sup>
  - After: 170 Bqm<sup>-3</sup>
- Whole solution approach
  - Design
  - Pilot installation
  - Unofficial measurements
  - Recommendations for improvements
- · The system exhibited unexpected behaviour at first
- After adjustement good results
- However: due to lack of concern
  - No official measurements ordered so far
  - No proper commissioning done

www.zag.si 43 Friderinkerkinkerer Readon protection conference . 2. 39. topter abler 2013

# **Identified risks**

- **Risk 1**: **unauthorized interventions:** Common problem with durability of radon mitigation solution is that in most of the cases additional interventions were done.
- **Risk 2: failure to operate system properly**: radon mitigation system properly executed, however instructions for use not respected. The system was not operated continuously.
- Risk 3: failure to comply fully with instructions for system execution: In some cases the radon mitigation system was improperly executed due to lack of understanding of the purpose of individual components.
- Risk 4: users rely on mitigation system without further measures: user of the building does not feel any need for further considering concentration monitoring.

www.zag.si

#### **Essential measures**

- Based on experience following is particularly imporatnt:
  - Radon mitigation has to be done by professionals all the way (design to execution)
  - Good commisioning and maintenance is essential
  - Clear guidelines for radon prevention are needed
    - Radon maps
    - Legislation
    - User guides
  - It seem that awareness in general public has to be high or systems will fail

# Conclusions

- Radon can be successfully mitigated
- Plenty of mitigation knowledge available
- However there are "impossible" cases as well
- Successful rate is high, however:
  - Seldom concentration is not elevated at all
  - Difficult to explain problems often occure, e.g.:
    - Rock in soil
    - Cracked and permeable walls
    - Higher concentration at 1<sup>st</sup> floor in comparison to ground floor
- Identified risks pose big threat to overall success

# Thank you for your attention!

www.zag.si

Friderik Knez | Radon protection conference , 2. -3. september 2013